Alle Beiträge von vzekcwebmaster

GS/OS – Das grafische Betriebssystem des Apple IIGS

Zwar lassen sich auf dem Apple IIGS sowohl das Apple DOS 3.3 und das später eingeführte ProDOS in seiner 8-Bitvariante nutzen, doch liegen dann alle IIGS-spezifischen Möglichkeiten weitgehend brach. Erste IIGS Modelle wurden mit einer erweiterten 16-Bit ProDOS Variante ausgeliefert, bekannt als ProDOS-16. Die ersten Versionen stellten reine Textkonsolen bereit und wurden nur durch grafische Shells aufgepeppt.

Dies sollte erst im September 1988 entscheidend verbessern, als Apple das neue Betriebssystem GS/OS (schon als Version 4.0) vorstellte. Viele der in ProDOS und dem Apple III Betriebssystem SOS vorhandenen Techniken waren in diese Neuentwicklung eingeflossen. Und: GS/OS brachte eine grafische Oberfläche mit, den Finder. Die Namensgleichheit zum Macintosh Betriebssystem kommt nicht von ungefähr, denn obwohl der Finder des GS/OS eine eigenständige Entwicklung darstellt, sind viele der vom Mac bekannten GUI Elemente auch in der GS/OS Variante vorhanden. GS/OS ist ein vergleichsweise modernes System, es kennt Treiber für Geräte, ein abstraktes Dateisystem mit verschiedenen „file system translators“ (FST) zum Zugriff auf unterschiedliche Dateisysteme und ein zentrales Drucksystem mit Treibern für unterschiedliche Drucker. Nicht nur die eingebauten Schnittstellen und Standardgeräte werden unterstützt, auch SCSI Schnittstellen und MIDI Ports lassen sich ansprechen. GS/OS ist zudem netzwerkfähig, denn es unterstützt AppleTalk über die vorhandene RS-422 Schnittstelle und bringt den IIGS in serielle Macintosh-Netze. Dieser Funktionsumfang fordert seinen Tribut bei den Systemressourcen- mindestens 512 kB und eine überarbeitete Firmware (ROM01) ist Einsatzvoraussetzung.


Bild 1: Die Oberfläche von GS/OS

Als 1989 die verbesserte Version 5.0.2 auf den Markt kam, hatten auch neue, vom Macintosh entliehene Techniken wie Desktop-Accessoires und verbesserte SCSI Unterstützung Einzug gehalten. Die letzte veröffentlichte Version 6.0.1 erschien dann 1993. Sie kann mit Standarddialogen für viele GUI Aktionen, verbesserten Treibern, einem überarbeiteten Finder und deutlich erhöhter Geschwindigkeit aufwarten. Es werden nun auch PostScript Drucker unterstützt. GS/OS 6.0.1 fühlt sich auch heute noch „modern“ an- das „look & feel“ entspricht dem des Macintosh System 7. Umsonst ist dieser Komfort nicht- mindestens 1,25 MB RAM sind Bedingung, also mindestens eine 1 MB Speichererweiterung im Memory Slot. GS/OS 6.0.1 ist heute kostenfrei von Apple verfügbar und kann in Form von Diskimages heruntergeladen werden (siehe ).


Bild 2: Eine Anwendung unter GS/OS

GS/OS 6.0.1 sollte ursprünglich eine Ethernet-Unterstützung bieten, doch fehlte diese in der veröffentlichten Version. Auch die Apple Ethernetkarte ist niemals erschienen. Dennoch muss niemand heute auf Ethernet im Apple IIGS verzichten. Mit der Uthernetkarte steht ein Ethernet-Interface mit RJ-45 Anschluss bereit. Einen Nutzen daraus zieht man jedoch erst mit Einsatz von Marinetti (), einem IP- und TCP/UDP Protokollstack für GS/OS ab Version 5, deren aktuelle Version 3.0 b3 im Juli 2006 erschien. Es funktioniert mit einem seriellen Kabel (Nullmodemkabel) und kann per PPP Protokoll einen entsprechenden Server auf einem PC z.B. unter Linux ansprechen. Für Marinetti aber auch ein Link Layer Treiber bereit, der die Uthernetkarte unterstützt. Dies bringt den Apple IIGS deutlich performanter an ein IP-Netz und das Internet. Sinnvoll ist das besonders für Datentransfer mittels FTP und die Nutzung von Druckern. SAFE2 ist ein brauchbarer FTP GUI-Client, Treehugger () ermöglicht es, HP JetDirect Druckerserver anzusprechen. Vorsichtige Gehversuche in das World Wide Web ermöglicht Arachnid, jedoch ist dieses Projekt nicht über die Version hinausgekommen. Jenseits einfachster HTML Seiten ist ein Absturz der Software sehr wahrscheinlich.

Am Ende des Regenbogens- der Apple IIGS

Als die damals noch junge Firma Apple Inc. im Sommer 1977 den Apple II Computer vorstellte, war der Grundstein für eine bis dahin beispiellose Erfolgsgeschichte gelegt. Das solide Hardware-Design basierend auf dem 8-Bit Prozessor MOS 6502, die vielfachen Erweiterungsmöglichkeiten und besonders die konsequente Modellpflege machten die Apple II-Familie über mehr als eineinhalb Jahrzehnte hinweg erfolgreich. Dem ursprünglichen Apple II folgte 1979 der Apple II plus, 1983 der Apple //e, 1984 das Kompaktmodell Apple //c und schliesslich als letztes und am weitesten entwickelte Modell der Apple IIGS. GS steht hierbei für „Graphics“ und „Sound“.

Dieses Modell war das letzte, an dessen Entwicklung der Apple-Mitbegründer Steve Wozniak selbst beteiligt war. Wozniak hatte Apple 1981 verübergehend verlassen, um sich seiner akademischen Laufbahn zu widmen. Nach seiner Rückkehr im Jahr 1983 widmete er sich dem damals neu erschienenen 65816 Prozessor, ein Hybridprozessor mit einem 8-Bit und einem 16-Bit Modus. Im 8-Bit Modus war diese CPU kompatibel zum ursprünglichen Prozessor des Apple II. Wozniak schwebte ein Hardware-Design eines „Apple IIx“ vor, das den Apple II für die damals neue 16-Bit Welt öffnen sollte. Leider machten technische Schwierigkeiten bei den ersten Prozessor-Prototypen, aber auch immer höher gesteckte Projektziele die Entwicklung schwierig. Im Frühjahr 1984 schliesslich wurde das Projekt abgebrochen, der Apple IIx verschwand in der Versenkung und Apple und auch Steve Wozniak widmete sich vorrangig dem Macintosh.

Die klassische Apple II-Linie wurde parallel weitergeführt, im Sommer wurde der Apple //c als kompaktes und geschlossenes System vorgestellt. Es wurde vom Start weg ein grosser Erfolg, was selbst Apple überraschte und die einseitige Orientierung auf den Macintosh aufweichte. Es wurde auch über eine Neuauflage eines 16-Bit Apple II Systems nachgedacht und schliesslich mit dem Projekt „Phoenix“ initiiert. Das Projekt nahm rasch Fahrt auf, Wozniak und sein Team erarbeiteten ein solides Design. Im Frühjahr 1986 wurde auch die Fachpresse aufmerksam, Insider-Magazine wie „Peeker“, aber auch das Magazin „Chip“ trugen Gerüchte über den neuen „Super-Apple“ weiter. Im September 1986 stellte Apple dann den IIGS offiziell vor. Technische Schwierigkeiten bei den extra für den IIGS entwickelten Custom Chips sorgten zunächst für einen Fehlstart bei der Markteinführung. Erst 1987 war dann endlich ein funktionierendes Serienmodell in ordentlicher Stückzahl verfügbar, in Deutschland kostete das Paket mit Tastatur, Maus, 5 1/4 Zoll Diskettenlaufwerk und RGB Monitor knapp 4.400 DM (ca. € 2.200 ).


Bild 1: Ein typisches Apple IIGS System

Der Käufer erhielt dafür ein System mit ordentlichen, aber im Vergleich zu anderen Systemen nicht überragenden Leistungsdaten. Hier hatte der Commodore AMIGA die Messlatte inzwischen deutlich höher gelegt als noch 1983 zu Zeiten des Apple IIx Projekts. Aufgrund der hohen Kompatibilität zu bestehender Software und Hardware zur Apple II Linie erfreute der IIGS daher hauptsächlich treue Altanwender. Für diese war der IIGS als ein rundherum verbessertes System tatsächlich eine kleine Sensation, übertraf er doch die bisherigen Modelle in allen Bereichen deutlich. Übrigens mussten Apple //e- Besitzer keinen vollständigen Neukauf erwägen, sondern konnten ihre vorhandenen Geräte umrüsten lassen. Apple-Händler tauschten das Motherboard eines //e gegen ein passenden IIGS-Board aus. Man erhielt so einen IIGS enhanced- Rechner. Diese Option ist auch die Ursache dafür, das Platinen von Speicherkarten und überlangen Erweiterungskarten am vorderen Ende immer abgeschrägt sind. Nur so passen diese Karten auch in einen umgerüsteten //e.

Was hat der IIGS denn nun zu bieten? Zunächst ist da der vergrösserte Arbeitsspeicher: Er lässt sich auf 8 Mbyte RAM ausbauen, wobei die ersten 128 Kbytes als „slow RAM“ genauso wie bei älteren Modellen organisiert sind. 256 kBytes stecken als Chips auf dem Mainboard, weiterer Speicher erfordert Steckkarten in einen separaten Memoryslot. Bei der Text- und Grafikausgabe stehen die bekannten 40- und 80-Zeichenmodi sowie die LoRes- und Hiresgrafikmodi bereit. Ein speziell entwickelter Video Graphics Controller Chip (VCG) fasst zweimal 16 kBytes des Arbeitsspeichers zu einem 32 Kbyte-grossen Block zusammen. So lassen sich zusätzlich Grafikauflösungen von 320×200 Pixeln in einer 16 Farbpalette und 640×200 Pixel in einer 4 Farbpalette pro Zeile darstellen. Je Zeile kann eine eigene Farbpalette verwendet werden, insgesamt stehen für diese Paletten 4096 verschiedene Farben zur Verfügung. Zum Vergleich: der Macintosh als Flaggschiff Apples konnte im gleichen Jahr nur Schwarzweiss-Grafik. Die Ansteuerung dieser Farbgrafik erleichtern Routinen der Firmware, die QuickDraw II Funktionen. Die Ähnlichkeit zum Macintosh ist nicht zufällig: Nach dem Weggang von Steve Jobs legte Apple die Entwicklungsabteilung des IIGS mit der Macintosh-Entwicklung zusammen, beide Teams arbeiteten fruchtbar zusammen. Aber der IIGS kann sich nicht nur sehen- sondern auch hören lassen- und das dank des bereits im Miracle Sound Synthesizer verbauten Soundchips von Ensoniq in 15 gleichzeitigen Stimmen, allerdings in Mono. Das System zeigt sich nach aussen hin sehr offen: zwei serielle Schnittstelle, ein Mausport, ein Smart Port für Diskettenlaufwerke (dieser war mit dem //c vorgestellt worden) und ein mit dem Macintosh eingeführter AppleTalk Anschluss machten Steckkarten für die meisten Anwender überflüssig. Auch bei der Tastatur profitierte der IIGS vom Mac: Zum Anschluss wird der Apple Desktop Bus (ADB) verwendet. Mäuse und Tastaturen vom Macintosh laufen dadurch auch am IIGS.

Die Weiterentwicklung der IIGS Hardware ging im Gegensatz zur Softwareentwicklung nur zögerlich voran. Im August 1989 erschien eine neue Firmware-Version (ROM03), weitere Verbesserungen liessen sich nicht ausmachen. Das Ende des Apple IIGS kam dann im Dezember 1993. Zwar war ein runderneuerter Apple IIGS in der Entwicklung, der standardmässig SCSI Festplatten und PS/2 SIMM Bausteine als Speicher unterstützen sollte, dieser kam aber nicht aus dem Experimentierstadium. Stattdessen verschwand der IIGS still und leise von den Preisblättern, die Apple II Linie wurde als nicht mehr zeitgemäß erachtet. Einige Jahre danach folgte nach der Rückkehr von Steve Jobs auch das Ende der Regenbogenfarben im Apple Logo.

Allgemeines zum KC 85/3

Die Kleincomputer der Reihe KC 85 wurden ab 1984 in der DDR vom volkseigenen Betrieb VEB Mikroelektronik „Wilhelm Pieck“ Mühlhausen aus dem Kombinat Mikroelektronik Erfurt in den Modellen HC900, KC 85/2, KC 85/3 und KC 85/4 gebaut und waren die am weitesten verbreiteten Computer der DDR. Der Hersteller dachte zunächst an den Hobby- und Privatbereich, allerdings wurden die meisten Rechner für die Volksbildung reklamiert. Bis kurz vor dem Ende der DDR (ca. 1988) waren diese Computer dadurch für Privatpersonen schwer erhältlich. Auch der hohe Preis (4300 M für den KC85/3) sorgte dafür, dass die „Kleincomputer“ kaum ihren Weg in Privathaushalte fanden.

Er basierte auf der 8-bit-CPU U880 (einem Z80-Clone) mit 1,76 MHz Taktfrequenz. Der typische Anwendungsfall der Mühlhausen-Rechner war ein KC 85/3 mit 16 KiB RAM (erweiterbar mit Zusatzmodulen), eingebautem ROM-BASIC, angeschlossenem Kassettenrecorder zur Datenspeicherung und Anschluss an einen als Monitor benutzten Fernseher (über Koaxialkabel, FBAS oder RGB). Dem KC 85/2 fehlte das ROM-BASIC und die Kleinbuchstaben. Der KC 85/4 kam mit 64 KiB RAM, ca. 40 KiB Bildwiederholspeicher und verbesserten Grafikmöglichkeiten, die aber durch den Zusammenbruch der DDR kaum noch ausgenutzt wurden. Alle KC 85 aus Mühlhausen waren grafikfähig; die Bildschirmauflösung betrug 320×256 Bildpunkte, allerdings war die „Farbauflösung“ wesentlich geringer; in einem Pixelrechteck von 4×8 Pixeln konnte es nur eine Vordergrundfarbe (aus 16 möglichen) und eine Hintergrundfarbe (aus 8 möglichen) geben; diese Restriktion verringerte sich beim KC 85/4 auf ein Rechteck aus 1×8 Pixeln und zusätzlich konnte ein „echter“ Farbmodus mit 4 Farben und ohne Begrenzung eingeschaltet werden. Im Rundfunk der DDR gab es eine gefragte Computersendung „REM“. Neben Programmierkursen („Basic für Fortgeschrittene“) und Tipps und Tricks war das Besondere darin, dass über den Äther Software ausgestrahlt wurde. Die Bits und Bytes wurden mit Hilfe der Frequenzmodulation und Pulsmodulation in hörbare Geräusche umgewandelt, welche mittels Kassettenrekorder mitgeschnitten und später in den KC geladen werden konnten (aus Wikipedia)

Unterlagen:

Da die Darstellung auf TV-Geräten immer nicht so scharf ist, kann man dem KC85/3 auch ein FBAS Signal abnehmen und damit einen Farbmonitor (z.B die Commodore Monitore 1802/1901 etc.). Dazu wird an dem TV-RGB Anschluß auf der Rückseite die PIN’s 9=Masse und 10=FBAS Signal von links gesehen, wenn man auf der Rückseite auf den Anschluß schaut und auf der unteren Reihe entnommen:

Commodore C64 / C128 Modelle

Übersicht der Commodore C64 / C128 Modelle:

Schneider/ Amstrad CPC Modelle

Folgende Modelle der Schneider/ Amstrad CPC Serie gibt es (externe Links zu Wikipedia):

Fietsenfrühling in Nordhorn / Bildergalerie

Der Fietsenfrühling in Bookholt ist eine Fahrradveranstaltung und ein Stadtteilfest. Der Verein zum Erhalt klassischer Computer e.V. trägt regelmässig mit einem Infostand zu dieser Veranstaltung bei.

LCD Monitore reparieren

http://neoxy-yx.blogspot.com (Externer Link)

C64 Diagnose: Blank Screen

Ray Carlsen CARLSEN ELECTRONICS… a leader in trailing-edge technology.

Blank screen is the most common symptom, and a failing PLA chip is the most common reason. However, quite a few other failures can cause it as well, such as a bad power supply (check with a known good substitute), bad RAM chip(s), and in general, just about any other chip in there because many chips share multiple data lines. If any one of those lines is loaded down or missing a signal for whatever reason, it can produce that symptom. To narrow it down a bit:

Turn the computer off and back on rapidly about five times. If the screen ever comes up with flashing colors or all one color, the PLA is suspect. Replace it to check. Try a cartridge, such as a game. It essentially „replaces“ some of the chips in the computer when it runs. If a cart works, check the ROMs. The screen may have a normal border even if the CHARacter or BASIC ROMs are bad. A bad Kernal ROM will produce no border.

The internal RF unit outputs a signal that goes to the antenna input of your TV. If the picture is snowy, suspect the RF modulator, assuming the direct video output of the 64 is normal. If the computer is „dead“ but is getting power (red LED on), the modulator will produce a black screen… darker than the blank screen of a failing chip in the computer. A missing 9VAC (power supply problem) is a possiblility. Note that the later C64C will still work without the 9VAC or if the internal fuse opens. However, you will have no sound, the cassette will not work, and the TOD clocks will not work.

See if any of the RAM chips (there are eight of them) get warm or hot… feel each one with the back of your finger after the computer has run for about 5 minutes. Shorted chips will get hotter than the others. Note: bad RAM doesn’t always get hot. See if the computer resets the other components in the system like the drive and/or printer. If so, try a „blind“ disk command and see if the drive responds.. try formatting a disk. If that works, you may have a bad VIC chip (no screen display). Sometimes a bad SID chip will produce a blank screen… pull it out and try the computer. It will run without it, although you will have no sound, and a proportional mouse will not work. The few large chips that normally run hot have a high failure rate: in rough order… the PLA, SID, MPU and the VIC. Static zaps usually take out chips like the CIAs. A shorted CIA can produce a blank screen. Note that you will get the startup screen with the CIA’s removed. You can use that as a diagnostic. The smaller so-called „glue logic“ chips (TTL) run cool and are pretty rugged. Although they rarely fail, I’ve had a few that drove me crazy by making me unsolder a dozen IC’s until I found the bad one. With the above noted exceptions, removing a chip will not allow the computer to produce the startup screen. Removing a chip will in most cases produce a blank screen.

The only practical way to check chips is by substitution. The easiest way to do that is by inserting each suspected chip into a working computer that already has all chips socketed. (You can chase your tail doing it the other way around if you have more than one bad one.) I made a test board for just that purpose. Suspected chip(s) can be tested one at a time and only the bad ones need be replaced. At the very least, you need a source of known good chips for test purposes. Be careful… they are static sensitive. If you don’t want to go to that much trouble to diagnose the problem, you will probably be better off hunting up another C64. Chips are hard to find and expensive. Keep a spare „breadbox“ or two, even if only for parts.

C64 BLANK SCREEN 02-22-99

C64 Diagnose: 1540 und 1541

1540 / 1541 Service Manual

From: Ray Carlsen CET

1541 CHIPS VS SYMPTOMS latest additions or corrections: 2-15-08
This list represents the most common versions of the 1541 in the standard brown case with PC board numbers 1540050 (early ALPSpush-down door mechanism) and the 251830 and 251777 (Newtronics twist door mechanism). Although the very early „long board“ (white case) 1541 is not represented here, major chip functions are of course similar. Thatdrive used more TTL (so-called „glue logic“) chips that were later „integrated“ into a single motor control IC. Although functionally identical, newer drives such as the 1541C and 1541-II integrate more functions into fewer more specialized IC’s, making some repair parts even harder to find. Although most of the chips in the different versions of the standard brown case 1541 are the same, board layout and some chip ID numbers may be different. To eliminate confusion, I will list the two major versions of the drive separately. In another article (fix1541.txt) I will give you some troubleshooting tips. Included is how the drive should behave during normal operation and what is likely to cause a particular fault. Before suspecting any IC chips, don’t overlook more common causes of problems such as a dirty read/write head. Always check the „easy stuff“ first.

1541 CHIPS VS SYMPTOMS PCB# 1540050 (early version) with ALPS drive mechanism (1982)

UA1 74LS14 LOGIC

Partial failure common cause of „FILE NOT FOUND“ error. Total failure: when drive powered up, red LED stays on and spindle motor runs continuously (check also UB4, UC2, UC4, UC5, UC6, UD3, and UD5).

UB1 7406 (M53206P) LOGIC

Partial failure most common causing „SEARCHING FOR“ (also check UC3), or „DEVICE NOT PRESENT“. Total failure: drive may power up normally, but will not reset when the computer is turned on.

UB2 TMM2016AP-10 16K RAM TMM2116AP-15 or MB8128-15

When drive powered up, motor runs continuously and red LED flashes slowly (about 1 flash every 2 seconds).

UB3 325302-01 DOS ROM

When drive powered up, red LED flashes 3 times repeatedly.

UB4 901229-03 or -05 DOS ROM

When drive powered up, red LED stays on and spindle motor runs continuously. DOS ROM is a common failure. Check also UA1, UC2, UC4, UC5, UC6, UD3, and UD5.

UC1 325572-01 MOTOR CONTROLLER

When drive powered up, red LED comes on and goes out, but spindle motor does not turn. When LOAD attempted, spindle does not turn, red LED flickers, screen displays „FILE NOT FOUND“ and red LED flashes.

UC2 6522 VIA (MOTOR CONTROL INTERFACE)

When drive powered up, red LED stays on and spindle motor runs continuously. Check also UA1, UB4, UC4, UC5, UC6, UD3, and UD5.

UC3 6522 VIA (SERIAL INTERFACE)

Drive powers up and resets normally. When LOAD attempted, screen indicates „SEARCHING FOR …“, but no motors run and red LED does not light.

UC4 6502 MPU

When drive powered up, red LED stays on and spindle motor runs continuously. Check also UA1, UB4, UC2, UC5, UC6, UD3, and UD5.

UC5 74LS04 (74LS14) LOGIC

When drive powered up, red LED stays on and spindle motor runs continuously. Check also UA1, UB4, UC2, UC4, UC6, UD3, and UD5.

UC6 74LS00 LOGIC

When drive powered up, red LED stays on and spindle motor runs continuously. Check also UA1, UB4, UC2, UC4, UC5, UD3, and UD5.

UC7 74LS42P LOGIC (DECODER)

When drive powered up, motor runs continuously and red LED flashes slowly (about 1 flash every 2 seconds). Red LED may stay on and/or motor may stop.

UD1 7406 (M53206P) LOGIC

When drive powered up or reset, spindle motor runs momentarily, but red LED doesn’t come on. When LOAD attempted, screen indicates „SEARCHING FOR …“ but red LED does not light, spindle runs continuously, and screen shows „FILE NOT FOUND“ error.

UD2 7417 LOGIC (R/W CONTROL BUFFER)

When drive powered up or reset, red LED comes on and goes out, but spindle motor does not turn. If LOAD is attempted, red LED comes on, stepper moves slightly, spindle doesn’t turn, screen shows „FILE NOT FOUND“ and red LED flashes.

UD3 74LS86 LOGIC

When drive powered up, red LED stays on and spindle motor runs continuously. Check also UA1, UB4, UC2, UC4, UC5, UC6, and UD5.

UD4 9602 (8602) LOGIC (MMV)

Drive powers up and resets normally, but if LOAD is attempted, spindle motor runs with red LED out. Screen displays „SEARCHING FOR …“ and stepper does not move. Check also UE6.

UD5 74LS197 (74177) LOGIC (TIMER)

When drive powered up, red LED stays on and spindle motor runs continuously. Check also UA1, UB4, UC2, UC4, UC5, UC6, and UD3.

UE4 LM311 COMPARITOR (READ LOGIC)

Powers up normally. When LOAD attempted, spindle turns and red LED comes on, but „FILE NOT FOUND“ and red LED flashes. Check also UF3 and UF4.

UE6 74LS193 (7417) LOGIC (BIN COUNTER)

Drive powers up and resets normally, but if LOAD is attempted, spindle motor runs with red LED out. Screen displays „SEARCHING FOR …“ and stepper does not move. Check also UD4.

UF3 NE592N READ PREAMPLIFIER

Powers up normally. When LOAD attempted, spindle runs and red LED comes on, but „FILE NOT FOUND“ and red LED flashes. Check also UE4 and UF4.

UF4 NE592N READ AMPLIFIER

Powers up normally. When LOAD attempted, spindle runs and red LED comes on, but „FILE NOT FOUND“ and red LED flashes. Check also UE4 and UF3.

VR1 UA7812KC (LM340KC-12) +12 VOLT REGULATOR

Drive powers up „normally“, but motors run slowly or not at all. If that happens, drive access will produce a flashing red activity LED and errors „file not found“ or „drive not ready“ on the error channel.

VR2 UA7805KC (LM340KC-5.0) +5 VOLT REGULATOR

Green (power) LED dim, flickers, or does not come on at all, but spindle may run continuously and red LED may be dark.

CR1 2 AMP 200V BRIDGE RECTIFIER (FOR +12V)

Drive appears to power up normally, but motors do not run. Should get warm only if the drive is being accessed (motors running).

CR3 2 AMP 200V BRIDGE RECTIFIER (FOR +5V)

On power up, green and red LED’s are dim or dark and spindle motor runs continuously. May be intermittant and „die“ after warmup. Part runs very hot normally and is a common failure in this model.

1541 CHIPS VS SYMPTOMS PCB# 251830 or 251777 with Newtronics drive mechanism (1984)

UA1 74LS14 LOGIC

Partial failure common cause of „FILE NOT FOUND“ error. Total failure: when drive powered up, red LED stays on and spindle motor runs continuously (check also UB4, UC2, UC4, UC6, UC7, UD3, and UD5).

UB1 7406 (M53206P or 7707) LOGIC

Partial failure common cause of „SEARCHING FOR“ (check also UC3) and „DEVICE NOT PRESENT“ errors. Total failure: drive powers up OK, but does not respond to computer… no reset or disk access.

UB2 TMM2016AP-10 16K RAM TMM2116AP-15 or MB8128-15

When drive powered up, spindle motor runs continuously and red LED flashes about once every two seconds.

UB3 325302-01 DOS ROM

When drive powered up, red LED flashes 3 times repeatedly.

UB4 901229-03 or -05 DOS ROM

When drive powered up, red LED stays on and spindle motor runs continuously. DOS ROM is a common failure. Check also UA1, UC2, UC4, UC6, UC7, UD3, and UD5.

UC1 325572-01 MOTOR CONTROLLER

When drive powered up or reset, red LED comes on and goes out, but spindle motor does not turn. When LOAD attempted, spindle does not turn, red LED flickers, screen displays „FILE NOT FOUND“ and red LED flashes.

UC2 6522 VIA (MOTOR CONTROL INTERFACE)

When drive powered up, red LED stays on and spindle motor runs continuously. Check also UA1, UB4, UC4, UC6, UC7, UD3, and UD5.

UC3 6522 VIA (SERIAL INTERFACE)

Drive powers up and resets normally. When LOAD is attempted, screen indicates „SEARCHING FOR …“, but no motors run and red LED does not light.

UC4 6502 MPU

When drive powered up, red LED stays on and spindle motor runs continuously. Check also UA1, UB4, UC2, UC6, UC7, UD3, and UD5.

UC6 74LS04 (7713) LOGIC

When drive powered up, red LED stays on and spindle motor runs continuously. Check also UA1, UB4, UC2, UC4, UC7, UD3, and UD5.

UC7 74LS00 LOGIC

When drive powered up, red LED stays on and spindle motor runs continuously. Check also UA1, UB4, UC2, UC4, UC6, UD3, and UD5.

UC8 74LS42 LOGIC

When drive powered up, spindle motor runs continuously. Red LED may stay on, or flash three times and go out.

UD1 7406 (M53206P) LOGIC

When powered up, spindle motor runs momentarily, but red LED doesn’t come on. When LOAD attempted, screen indicates „SEARCHING FOR …“ but red LED does not light and spindle runs continuously.

UD2 7407 (7417) LOGIC (R/W CONTROL BUFFER)

When drive is powered up or reset from computer, red LED comes on and goes out, but spindle motor does not turn. When LOAD is attempted, stepper moves slightly, spindle doesn’t turn, and error message on screen is „FILE NOT FOUND“ with flashing red LED.

UD3 74LS86 LOGIC

When drive powered up, red LED stays on and spindle motor runs continuously. Check also UA1, UB4, UC2, UC4, UC6, UC7, and UD5.

UD4 9602 (74123) LOGIC (MMV)

Drive powers up and resets normally, but when LOAD is attempted, screen indicates „SEARCHING FOR …“ red LED does not light and spindle runs continuously. Check also UE6.

UD5 74LS197 (74177) LOGIC (TIMER)

When drive powered up, red LED stays on and spindle motor runs continuously. Check also UA1, UB4, UC2, UC4, UC6, UC7, and UD3.

UE4 LM311 COMPARITOR (READ)

Drive powers up and resets normally. Spindle motor runs, stepper moves slightly, but „FILE NOT FOUND“ error, and red LED flashes. Check also UF3 and UF4.

UE6 74LS193 (7417 or 7407) LOGIC (COUNTER)

Drive powers up and resets normally, but when LOAD is attempted, screen indicates „SEARCHING FOR …“ red LED does not light and spindle runs continuously. Check also UD4.

UF3 NE592N (LM592) READ PREAMP

Drive powers up and resets normally. Spindle motor runs, stepper moves slightly, but „FILE NOT FOUND“ error and red LED flashes. Check also UF4 and UE4.

UF4 NE592N (LM592) READ AMPLIFIER

Drive powers up and resets normally. Spindle motor runs, stepper moves slightly, but „FILE NOT FOUND“ error and red LED flashes. Check also UF3 and UE4.

VR1 UA7812KC (LM340KC-12) +12 VOLT REGULATOR

When powered up, green power LED comes on and red LED comes on and goes out normally, but motors do not run (or move slowly). Drive access will produce a flashing red activity LED and error messages „file not found“ or „drive not ready“ on the error channel.

VR2 UA7805KC (LM340KC-5.0) +5 VOLT REGULATOR

Green (power) LED dim, flickers, or does not come on at all. Drive appears dead, but spindle motor runs continuously.

CR1 2 AMP 200V BRIDGE RECTIFIER (FOR +5V)

Drive appears dead, but spindle motor runs continuously with both green and red LEDs dim or dark. May be intermittant and fail after warmup. This part normally runs hot and is a common failure item.

CR3 2 AMP 200V BRIDGE RECTIFIER (FOR +12V)

Drive appears to power up normally, but motors do not run. Should get warm only if drive is accessed (motors running).

Notes: UC2, UC3, UB4, and regulators VR1 and VR2 run warm normally and bridge rectifiers CR1 and CR3 run very hot if drive is being accessed. Otherwise, only CR3 will get hot.

Newtronics drives (twist type door latch) normally run a bit noiser (stepper chatter) than earlier ALPS (push down door) types.

Ray Carlsen CET CARLSEN ELECTRONICS… a leader in trailing-edge technology. Questions and comments are welcome, especially if you spot a mistake here. Thanks!

Classic Computing 2011 in Holzminden

Die Classic Computing 2011 fand am 01.10 und 02.10.2011 in Holzminden statt.

30 Jahre Retrocomputing

Die nur einmal im Jahr stattfindende, überegionale Ausstellung und Treffen stand im Jahr 2011 unter dem Motto „30 Jahre Retrocomputing“. Es waren Exponate aus den vergangenen Jahrzehnten der Computergeschichte zu sehen. Neben Klassikern wie dem C64 und dem Amiga 500 gab es Atari 8-bit, Atari ST Reihe, weitere Amiga Systeme (1200/4000/etc), aber auch Computer der Fa. Sinclair und Schneider sowie weitere Commodore Systeme nicht nur zu bestaunen, sondern auch zum ausprobieren. Zu den klassischen Rechnern wurde auch aktuell entwickelte Zusatzhardware vorgeführt. Klassischen Spiele wie z.B. Great Giana Sisters, Donkey Kong oder Arkanoid wurden mit Begeisterung gespielt.

Es trafen sie Gleichgesinnte und Interressierte zum Gedankenaustausch, Fachsimpeln und einfach zum Spaß an der
Sache. Viele zeigten ihren Kindern, wie ihre ‚Playstation‘ damals aussah und wieviel Spaß damit möglich war.

Pressespiegel

Bilder von der CC 2011