text o speech algorithm
sweel micro systems

150 chestnut street

providence, rhode iskand

02903

text to speech algorithm

By Ed Servello, Jr.
Documentation by Brad Shipp

sweet micro systems
150 chestnut street, providence, rhode island 02903

© 1982 SWEET MICRO SYSTEMS
150 Chestnut Street
Providence, RI 02903 (401) 273-5333

All rights reserved. No part of this manual may be
reproduced without prior written permission of Sweet Micro
Systems.

Apple II® and Apple II Plus® are registered trademarks of
Apple Computer, Inc.
Votrax® 1is a registered trademark of Votrax

The information contained in this manual is correct as far
as we can determine; however, Sweet Micro Systems reserves
the right to make improvements in the product and/or manual
at any time without notice.

Package Design by Teresa Level, Providence, RI.

INTRODUCTION

The Text To Speech Algorithm program is the latest
enhancement for the MOCKINGBOARD SOUND/SPEECH I and the
SPEECH I peripheral boards by Sweet Micro Systems. The
program was originally conceived and designed as a utility
for outputing synthesized speech in the most convenient and
logical manner - input the word as it is spelled, translate
the word into phonemes and then speak it correctly.
Throughout the development of this program, many
enhancements were added. Sweet Micro Systems is now proud
to present an educational and entertaining utility program
guaranteed to challenge your command of the English language
while at the same time, enjoyable to use.

The MOCKINGBOARD TEXT TO SPEECH ALGORITHM compares each
letter of the word or phrase typed to a table of relational
rules to select the correct phonemes. The table is
expandable and the rules can be edited for your personal
application or preference. The English language is
grammatically one of the most complicated human languages
and the countless exceptions make it impossible to create a
table which is completely effective. Therefore, the
ability to create or alter the tables enables you to produce
accurate text to speech conversion for specific applications
as well as conserve memory and disk space. Unnecessary
rules can be eliminated.

Before reading further or trying any of the examples, please
make a backup copy of the Text to Speech Algorithm diskette.
Also, the MOCKINGBOARD must be installed in slot 4. Please
refer to the section entitled INSTALLATION INSTRUCTIONS in
the MOCKINGBOARD User's Manual.

After you have made a back-up copy of the diskette boot the
diskette again. At this time you are faced with a "?" on
the screen with the cursor flashing. You are now ready to
begin your initial experimentation with the Text to Speech
program. At this time type in any word or sentence and
press return. The computer will then speak what you have
typed. If it does not speak at all please make sure you have
your Mockingboard Speech I or Sound/Speech I properly

1=1

installed in the computer. Insure that: (1) cables are
connected to speakers, (2) cables are connected to
Mockingboard and (3) the two volume controls, located at the
top, right rear of Mockingboard, are turned up. The third
knob, located just in front of the volume controls, adjusts
the pitch of synthesized speech. Experiment with it.
First, turn it away from you. The speech is slow and deep.
Next, turn it toward you. The speech quickens. Set the
knob at the point most appealing to your ear.

Should you wish to have the computer spell rather than speak
simply type in the word "spell™ and all words you enter will
be spelled rather than spoken. To re-enter the speech mode
simply type in "speak" and all words typed will again be
spoken. In the event you wish to use the words speak or
spell as the first word in a sentence hit the space bar
before typing, this avoids changing modes. By now you are
familiar with the basics of the program so, please read on.
Next you will learn about the flexibility built into this
program.

A REVIEW OF THE SPEECH SYNTHESIZER

The Mockingboard Sound/Speech I and Speech I use the Votrax
phoneme synthesizer to create speech. Each word in the
English language can be divided into different sound units
called phonemes. There are 64 of these phonemes in our
language, including pauses. These are sent to the Votrax
chip and are spoken by the Mockingboard. There is a complete
list of the phonemes generated by the Votrax chip on page C-
2 of the Mockingboard User's Manual. References will be made
to this phoneme chart throughout this manual.

The phoneme system allows any word in English, and most
foreign words, to be spoken. To create speech, the user
must determine the phonemes necessary for each word and then
enter them into a table. This, however, has limited
applications. For instance, a talking educational program
would have to have on file all the words necessary for its
purpose and the author of the program would have had to hand
compile them.

1=-2

ALGORITHM

Algorithm is the method used to solve a problem. There are,
generally, many ways to approach the problem of converting
text into synthesized speech. The Mockingboard Text To
Speech Algorithm utilizes a table of rules to identify the
correct phoneme to output. The accuracy of each word spoken
depends entirely on the comprehensiveness of the rules
table. The advantages of this system are that it takes
almost no work to create speech from text. This text to
speech system can pronounce any word, and the entire rules
table (in its current state) takes less than 8,000 bytes.

Some systems are designed to store words in a dictionary to
be looked up and spoken if a match occurs. This has one
obvious drawback. If the word does not exist in the
dictionary, nothing will be spoken. Also, the task of
creating and storing an adequate dictionary from the roughly
600,000 words in the English language would consume
tremendous time and memory. The time required to look up a
word would be prohibitive as well. Most dictionary
synthesizers have a vocabulary of under 1,000 words. While
sufficient for certain applications, this method is
inadequate for a general-purpose speech synthesis system.

The Mockingboard Text To Speech Algorithm works in much the
same way a human does when he/she learns how to pronounce a
word. There are certain combinations of letters that
represent different sounds. For instance, the words AT and
ATE. Both contain the letters /A/ and /T/, but one /A/ is
the long /A/ and the other short. The algorithm looks for
letters like /E/ that modify the pronunciation of a word,
and modifies the phonemes accordingly.

Some pronunciation cannot be picked up with a set of rules.
Some words simply do not follow normal pronunciation at all.
For instance, the word ONE. It should be spelled WON or
WUN. Indeed, following the standard rules for pronunciation,
ONE should be pronounced like OWN.

Many combinations of characters, like ONE, exist that
require special or unique rules for correct pronunciations.
The words AVENUE and AVIARY are very similar, but the /A/
sound in the two is quite different. Rules must be very

carefully worked out to account for these very subtle
differences. Occassionally, there will be words that are
not pronounced correctly.

The Mockingboard Text To Speech Algorithm is in RAM rather
than in ROM for much greater flexibility. Algorithms burned
into ROM cannot be modified. Although utilizing RAM
requires that the rule table be loaded into memory, you can
make changes and additions to the pronunciation rules
specifiic to your application. Also, you may not agree with
some of the rules in the current table and wish to change
them. In ROM, this would not be possible. Jargons or
vocabularies specific to a profession or interest exemplify
the usefulness of this method. Most people never use the
word AVIARY, but an avid bird watcher most certainly would.
The bird enthusiast can add rules to accommodate this word,
while others can use the space to accommodate other words.

HOW THE ALGORITHM WORKS

The Text to Speech Algorithm is a series of machine language
routines that locate the text to be converted; translate
the group of characters, sometimes full words, into
phonemes; and output them to the Votrax chip on the
Mockingboard.

The word or phrase typed is automatically assigned to the
variable MB$ (for MockingBoard) by the input routine on the
supplied disk. If you create your own input routine in your
program, you must also use the MB$ variable as this is the
only variable recognized by the text to speech conversion
routine. Once the MB$ variable is located in the Applesoft
variable table, the text is loaded. For those who have
lower case adapters, the text will be converted to upper
case.

Before any phoneme generation takes place, the text
associated with MB$ is "categorized." That is, each
character in the string is broken down into one of the
classification types described below and marked accordingly.
The markers are stored in a buffer and denotes the
classification type of the corresponding character in MB$.

1-4

The classification types and symbols are as follows:

! Non-Alphabetie Character 10#$37&%()_+12345678

90<>?,. /53" [1{}

o Any Vowel AEIOU

Front Vowel EIY

$ Zero or More Consonant BCDFGHJKLMNPQRSTVWXZ
& One Consonant BCDFGHJKLMNPQRSTVWXZ
7 Voiced Consonant#® BDGJLMNRVWZ

#) voiced consonant is one that, when pronounced, requires
vibration of the vocal cords.

The phrase: SOUND IS SWEET
would be marked as: $"ITI#$1$%F4S

The next routine is the actual conversion of text to phoneme
code. The text in MB$ is read in, one character at a time.
It should be noted that the program will read each word from
right to left; that is, it will read the last letter or
character of the word first and work towards the beginning
of the word. The rule table for the character being read is
then located. Within the table are a 1ist of sequentially
numbered rules. The characters are compared to the rules in
successive order. Each rule attempts to isolate a specific
condition for a phoneme. The rule may accomplish this by
specifying a particular character or characters to the right
or left of the character being read. If the condition
exits, the phoneme code associated with this rule is stored
in a buffer until a driver routine is called to output the
phonemes for the word. These rules may also specify the
classification marker assigned to the character. This
provides for a more general application such as any
consonant to the right of the character being read. A more
detailed explanation of the rules follows this section.

The following is a sample Basic program for outputting
speech through the text to speech program. As you can see,
there is very little programming required to produce speech.
You may add speech capabilities to your programs by
including the text to speech program. The programs are
completely portable and we encourage you to explore and
create new applications.

10 D$=CHR$(4): REM ALWAYS A GOOD IDEA.
20 PRINT D$;"BLOAD T-S2.0BJ"

30 PRINT D$;"BLOAD RULES2.0BJ"

40 PRINT D$;"BLOAD RNDX2¥,0BJ"

50 PRINT D$;"BLOAD PHIDRV2.0BJ"

60 POKE 1022,161:POKE 1023,67

70 INPUT "ENTER SOME TEXT:";MB$

80 CALL 16800: REM SET UP PHONEME TABLE
90 CALL 17280: REM SEND TABLE TO CARD
100 GOTO T0O

Lines 10-50 loads the object codes for the four parts of the
Text to Speech Algorithm. The T-S2 is the main program
where the text is converted to speech. The RULES2 is the
actual rule table and RNDX2 is the index to the rule table.
The RNDX2 contains the addresses for each character subtable
and directs the program to the correct character subtable.
Finally the PHIDRV2 is the phoneme interrupt driver which
outputs the phonemes to create speech utilizing the APPLE
interrupt structure. Line 60 resets the APPLE interrupt
vector and directs it to the interrupt routine of the
PHIDRV2. Line 70 merely inputs the variable MB$. Line 80
calls the first part of the algorithm (described above),
which simply looks in the Applesoft variable lookup table,
finds MB$, gets the string, and translates it into a string
of phonemes stored in a buffer. Line 90 calls the second
half of the algorithm, which sends the phonemes in the
buffer to the card to output speech.

Notice that the program loops back to line 70 BEFORE the
text has finished being spoken. If you send two strings to
the Text to Speech Algorithm too closely together, the
second will halt the first in the middle. To counter this
and to make programming with the Text to Speech Algorithm
easier, there is a flag that the Text to Speech Algorithm
sets when it is through speaking. This flag can be polled to
test for completion before a program continues. Location 25
($19) is used as a "busy" flag. If it contains a value of
255, then the SC-01 is still speaking a phoneme. If the
address contains a 0, then the SC-01 is finished speaking
the phoneme.

1-6

RULE TABLE

Just how is the rule table set up? How does the Text To
Speech algorithm interpret those rules? These are questions
which we will now address.

First, let's return to a previous example: the word AT and
the word ATE. Recall that the ending /E/ caused the long
/A/ sound in ATE rather than the short /A/ sound as in AT.
But why does the words ATE and HATEFUL have the same long
/A/ sound. The /E/ is not at the end of the word. Further
examination reveals that words like RAKE and TALE also have
that long /A/ sound. In fact, any time that /A/ is followed
by a consonant and then /E/, the long /A/ is pronounced.

Will all vowels produce the long /A/ sound? If the vowel /0/
follows, will the sound be the same? The word ATOM does not
produce the correct /A/ sound. However, the word LABOR does.
You may explore this further or develop a separate rule to
deal with the vowel /0/. Since all vowels do not produce
the desired results, we can only make a general assumption
regarding the vowel /E/.

Based upon the assumptions made, a rule is created to test
for the following conditions: If the character read is an
/A/ then look one space to the right for a consonant. If it
is a consonant, then look one more space to the right and
check to see if the vowel /E/ is present. If the word fits
the conditions, then pronounce the long /A/ sound. The
phoneme code for a long /A/ is 05 or 06, depending on
personal preference. Refer to the phoneme table in the
user's manual and note that the only difference between
these two phonemes is the duration that the sound is spoken.

Another assumption may also be made at this time. If the
character is an /A/ and the next character is a consonant,
but the character after that is NOT a vowel (as in AT or
CHATTER) then pronounce phoneme 2E or 2F, again depending on
personal preference.

Obviously this is a sweeping assumption, but you may insert
more definitive rules between these two rules as you find
relationships which appear to produce the same sounds.

There are, of course, words which march to the beat of its
own drum - or in this case, the sound of its own rules.
That is, words which cannot be converted into speech with
conventional rules. An excellent example of this and one
which troubled us greatly, is the /CH/ sound. These two
letters can assume many different sounds and apparently
follow no particular rule (at least none was discovered).
Words with these letters can be pronounced hard, similar to
a /K/ sound, as in CHARACTER; or soft, similar to a /SH/
sound, as in CHARADE; not to mention its own sound, as in
CHARCOAL. All of these examples begin with CHAR, yet they
are pronounced three different ways without a clue as to
why. The only way we have found to deal with such
exceptions, is to create a rule to look specifically for the
word and assign the appropriate phoneme code.

To continue our discussion on developing rules, the vowel
/E/ produces some interesting and unique conditions.

If the next character is also an /E/, then send
phoneme 2C, and skip one character in the text.
Why skip a character? Because the letter group EE
corresponds to only one particular sound, not two
separate sounds.

Sometimes the /E/ is not pronounced but used instead to
modify the pronunciation of another syllable. In the word
ATE, for instance, the /E/ is not pronounced, but is used
merely to indicate the correct pronunciation of the /A/.

If an /E/ is encountered and the previous
character was a consonant, and the character
before that was a vowel, then do not pronounce
anything.

The word WHY is another good example of words that follow no
easily definable general rule - so it has a rule of its own.

If the first character is a /W/, the next is an
/H/, and the one following that is a /Y¥/, then
skip three characters and pronounce the phonemes
2D, 08 and 22.

You can see that making rules that are effective and
efficient is no simple matter. The only way to become
proficient at developing rules is to actually do it

yourself. A program on the Text To Speech Algorithm disk
called PRE2 (an acronym for Phoneme Rule Editor, version 2)
was written specifically to make this task as simple as
possible. PRE2 is used to create, test and edit rules. Of
course, there are many rules already on the disk, but you
may wish to add rules, or even delete some.

PHONEME RULE EDITOR

The Text To Speech Algorithm's input program is
automatically loaded at the beginning when the disk is
booted. To access the PRE2 program:

Type QUIT next to the /?/ to exit the program

Type RUN PRE2

A menu of commands will appear. Hit the space bar.
Enter the character subtable to be edited. (A set of
asterisks will blink back and forth to let you know the
table is loading correctly.)

5. The components of the subtable will be displayed on
the screen. (Don't worry, they are supposed to look sort
of strange at first.)

Fwn =
. & »

For the purpose of demonstration, the rule table for /A/
will be used. You should see something like this:

>1=0131
>IR!=0220
I>RE!=0115
>NGE!=012022
$>L1=023318

nmeEwmn =

12 >&ION!1=0120
27 =012F
As you may have guessed, the rule table is decoded into

regular characters, each of which have a certain meaning.
Look at RULE #1: [>!1=0131]

[>] "look at characters to the right of /A/"

[1] "look for a non-alphabetic character, like a
space, a period, or a comma"

k=1 signifies the start of the phoneme table for that
rule.

[01] The next two digits tell the program how many
characters to skip over in the literal string before
trying to interpret the next character. In this
example, skip only the /A/.

[31] The next group of numbers are the phoneme codes in
HEX. Each phoneme is two digits long. There can be
as many as necessary. In this example, phoneme 31
(UH2) is sent to the chip for output.

Translated into English, this rule reads something like "If
the next character is non-alphabetic (a space or period),
skip one character, and send phoneme 31 to the card to be
spoken." The last /A/ in ALPHA would trigger this rule.
RULE #3: [!>RE!=0115]

[1] "look for a non-alphabetic character in front of the
character /A/"

[>RE] "look for RE to the right of /A/"

[1] "look for a non-alphabetic character next"

Rule number 3 reads, "If the character before the /A/ is
non-alphabetic (ie- /A/ is the first letter in the word),
and /A/ is followed by RE and then another non-alphabetic
(signifying the end of the word), then skip 01 characters
and pronounce phoneme code 15 (AH1)." If you have been
paying particularly close attention, you may have noticed
that this is a rule specific to the word ARE. Notice that
although the entire word is recognized within the /A/ rule
table, the rest of the word (RE) is pronounced within other
rule tables. We could just as easily have skipped over 3
characters and sent the phoneme codzs for the entire word
ARE (code 152B for AH1R) to the card.

You may be wondering why ARE must have its own rule. Why
not just check for words ending in RE? Then words such as
HARE or CARE would be pronounced incorrectly. ARE is
similar to ONE - it just doesn't follow any of the rules, so
it has to have one if its own.

Take a look at RULE #12: [>&ION!=0120].
A new symbol, the [&], is used to denote ONE consonant. This

1-10

rule looks for words ending in /A/-/ION/, where - is a
consonant. AUTOMATION and VACATION are words which would
match this rule.

Other symbols of importance are:

[$] looks for zero or more consonants or any number of
consonant

["] 1looks for any vowel

[#] looks for the vowels E, I and Y

There is no character for multiple vowels.

The rule [>"=012F] 1looks for any vowel to the right of
/A/ such as AE, AI, AO, AU, etec.

Below is a quick summary of the character matching symbols:

Non-alphabetic character
Zero or more consonants

One consonant

Any vowels

By ¥, A

Search to right of character

WV i 2RO —

Rules are evaluated sequentially until the word matches the
conditions set by a rule. Rule #1 will be checked first,
then 2, ete. Therefore, it is important to carefully enter
the rules in the order you wish the word to be evaluated.
For instance, a rule reading [A>R=0102] to check for
occurances of AAR would be ignored if preceeded by
[">AR=022D1E], to check for an AR preceeded by ANY vowel.
Improper location of rules can make a difference.

Creating a Rule

Let's try making a rule of our own, but on paper. As
mentioned earlier, the word ONE follows no rules.
Therefore, a rule must be made especially for it. First, the
location of the rule must be determined. The O rule table
would be ‘the most logical place.

Since we are looking for just the word ONE and not the three

letters /0/, /N/, /E/ (as in DONE), our rule must look for
the beginning and end of the word. The [1] character can be

1-11

used to detect both the beginning and end of the word. To
the left of the [=], our rule would look like this:

I>NE!

"If the character to the left of the 0 is a space, period,
comma, etc., and to the right are the letters N and E,
followed by another non-alphabetic character (signifying the
end of the word), then..."

Now we have to choose some phonemes to represent the word we
are speaking. Since the rule looks for the entire word, we
must choose phonemes for the entire word. The phonemes 2D, 33
and 0D will pronounce the word ONE.

I>NE!=XX2D330D

The XX is the number of characters that we wish the Text to
Speech Algorithm to skip over in the literal string. Since
we have interpreted three characters in this rule, we want
the algorithm to move forward three characters. The XX
becomes 03.

I1>NE!=032D330D

If you look in the O table, you will find a rule that looks
very much like that one.

Editing Commands

The following commands are available for editing and adding
rules:

S: Select a Rule Table - Switch from one character's
rule table to those of another.

I: Insert a Rule - Allows a rule to be inserted
before another within a specific
rule table.

D: Delete a Rule

C: Change a Rule - This is the same as deleting and
then inserting a new rule.

E: Evaluate Rules - Drops you into the test mode. A
[>] prompt will appear. This
lets you test the rules that you
have just modified.

1=12

A: Archive Rules to Disk - BSAVE the rule table. The
rule table is saved in a file
called RULES2.BAK. This is a
precautionary measure to allow
the user to reuse the original
rule table.

M: Memory Update - Updates the rule table in
memory, making permanent any
changes that you have entered.
Unless you select the Memory
update option, any changes that
you have made will be lost, so
be sure and update memory before
evaluating a rule, selecting a
new one, or archiving to disk.

?7: Display Menu

ESC: Exit Program

Many times, especially when dealing with exceptions to
rules, the phoneme for a particular character may be sent
along with those of the last character evaluated. An example
of this would be the /WH/ words like WHY and WHAT. Since
WHAT is hard to distinguish between HAT and CAT, but is
pronounced differently, the /A/ sound in WHAT is stored
along with the /W/ rules. One of the /W/ rules looks for a
/B/ and an /A/, and then sends the phonemes for all of them
together. Keep this in mind when editing rules.

There is a maximum size of 256 characters per character
subtable. This includes all the special characters used to
formulate the rules.

NOTE: It is a good idea to make a backup copy of your
original rule table before trying to modify it.

INSTRUCTIONS FOR SAVING EDITED RULE TABLES TO DISK

After editing a rule, executing a Memory Update and evaluating
the change, you must save the rule tables to disk. The rule
tables are saved to disk by executing an Archive Rules to Disk
command. You will be asked if it is to be saved as Rules2.Bak.
Rules2.Bak is a backup for the rule tables. This is a
precautionary measure to insure you do not overwrite the rule
tables in error. If you are satisfied that the changes should be
made permanent, delete Rules2.0bj, rename Rules2.Bak to
Rules2.0bj. If you did not intend to save the tables to disk,
just delete Rules2.Bak.

T =1%

