weaet micr
g= _' L v i 4 pd f
JU CRQSTNUY .1['96

el
rovIGenceo,

r’s manval
Icro s;ystems

rhode island

user’s manual

sound |

sound I

speech |
sound/speech |

sweet micro systems
150 chestnut street, providence, rhode island 02903

© 1982 SWEET MICRO SYSTEMS

150 Chestnut Street
Providence, RI 02903 (401) 273-5333

All rights reserved. No part of this manual may be
reproduced without prior written permission of Sweet Micro
Systems.

Apple II® and Apple II Plus® are registered trademarks of
Apple Computer, Inc.

Synertek® is a registered trademark of Synertek Inc.
Votrax® is a registered trademark of Votrax

The information contained in this manual is correct as far
as we can determine; however, Sweet Micro Systems reserves
the right to make improvements in the product and/or man
at any time without notice.

Package Design by Teresa Level, Providence, RI.

TABLE OF CONTENTS

DIIRODRETEON wsivassnsvsnvoanssisvassbossinsievensanssess Ok
PIRENERR BYEORY WIA Las canaisinveviosssvinesarsetitoossioue 02
GENERAL INSTRUMENT AY38910 PSG ..ceeescsccvsnnnasaass 0-2
VOTRAX SC-01 SPEECH SYNTHESIZER .ccceccccccccsccsoses 0=3
EQUIPMENT REQUIREMENTS ..cccccccceccscscccsscnsescces 04
VOLUME AND FREQUENCY CONTROL .ovesccecsssscascccsaces O=6
INSTALLATION INSTRUCTIONS .ceeseececscsesaasassananee 0=5
WARBANTY REGISTRATION .siicesssiniscssncscnnrsnsansweie 06

SUDND S MADAL L S ot s s v ncns ey s vesnssnvenssssss 11
BOARD AND REGISTER SELECTION ..ccceocevcscessssscsasss 1=1
SRR AL R TN s e o vns oo diowine s s daonie e sl smeene 1=
LATCH, WRITE ARD RESET iccvcicsoncasasoscsccsvsssaves 1=4
PS6 BEGIBTERS coccscissuscevisssisisasenessassnnssese 1=9
TABLE ACCREE ROUTINR ¢isscivissvvcodonnieedsndd s dee duk

SONBRNEE BANUALD <525 5265 iannrSssmbie s ARt sine bl ans. 36l
BOARD AND REGISTER SELECTION .ccccecesccscccaacsccses 2=1
INITIALIZATION, LATCH, WRITE AND RESET ROUTINES 2-2
PR REGISTERS' iss'shloes v seavssvvvevensaviassesrdssie Jul
TABLE ACCESS ROUTIRR! . csciassosinsevosoresnvsssonsais Iuk

BPBECH T MMWAL seccissnseiinavivansssssveinestioisdedes 3=l
BOARD AND RECISTER SELERCTION ccccsccocsscsnnssssnsses 3=1
INETTALIIATION: o oo volsiesaciasineslsianie veinvnnnunsssssssooe J=2
CHECE BOUTINE LS st obstinnihsvaviynsrssssetusesssss 353
JABLE ACCEBE ROUTINE issvicscincnenssnnvossioscencess 3

SODND/SPEECE I MANDAL ! Sivisvenssvovsdosvsvensdsnsinseosie fel
BOARD AND REGISTER SELECTION ..ccceevecsccasscccesess 4=1
EREMARYS BOUTINED s ddddusiomnbinns ¢ bunmabbdosniehobs b in i§u2
PG BEGISTERS: roh ans i aniieieh oih s wnve s e s A AMDTIALY of Bl
TABLE ACCESS BROUTINE ..usscsvansessssosssssssasssosse b

APPENDIKAClll.‘I‘..c..l.l..allllllt...l.lll...a..c-'- A-I.
APPmDIxB L L B O LI L R I A I A I R A N A N N N TN ERER] B-l
APPENDIKC CEUE R R N I I R A R A R R R I O I T T IO S C-l

APPENDIX D L N N T A R N I N N]

. D"'l

P
i

INTRODUCTION

4

Mockingboard peripherals are a series of Apple II
compatible boards devoted to sound effects generation and
speech synthesis. The concept behind the Mockingboard
series is to provide you, the user, with a sophisticated new
tool that can be utilized to enhance your programs without
complex programming techniques. We want you to enjoy the
experience and be able to utilize this tool in all your
programs. Therefore, much of the complexity of generating
the various sound effects and speech have been assumed by
the hardware.

Mockingboard series currently features the Sound I, a sound
effects generator; Sound II, a dual sound effects generator;
Speech I, a speech synthesizer; and Sound/Speech I, a
combination sound effects generator and speech synthesizer.
Sound I board can produce a wide variety of sounds, ranging
from a gunshot to musical notes. The Sound II board was
designed to produce two independent sounds simultaneously.
The board can produce a continuous sound, such as a train,
from one speaker and at the same time, produce a gunshot
from the other speaker. Speech I board produces synthesized
speech by sequencing phonemes (basic sound units of speech)
to form words. Finally, all of the above features were
combined onto one board to produce Sound/Speech I. This
board can effectively produce a variety of sound effects and
continuous speech, while drastically reducing the complexity
of the software normally required.

Each section in this manual will be devoted primarily to
programming information for each board. Some program
listings have been included to illustrate the ease of
programming. The demonstration disk, included with your
board, is not copy protected so that you may view all of the
program listings. This will enable you to see and hear the
assortment of sounds produced from variations of the same
program. One added feature is that each sample program is
portable so that you can utilize the individual modules in
your programs.

The boards for the Mockingboard series were very carefully

designed to ensure versatility and ease of programming.
Therefore, the selection of the major components played a

0-1

. e —

significant role in their development. A brief description
of these components and their contributing features is given
below.

SYNERTEK SY6522 VERSATILE INTERFACE ADAPTER*

Mockingboard peripherals are interfaced to the Apple II by
the Synertek SY6522 Versatile Interface Adapter, which will
be referred to as the "6522." The 6522 was selected as an
I/0 (input/output) control device because of its flexibility
including features which provide the user with greater
programming capabilities.

Each function (sound effect and speech) is controlled by its
own separate interface chip. This combines the versatility
of independent control with the power of merging sound
effects or speech and sound. In fact, the capability of
producing simultaneous sounds can only be achieved through
this added feature.

This chip interface also has features which enhance
programming capabilities. The 6522 is a register oriented
device. Any one of sixteen internal registers can be
referenced directly through the Apple, providing the user
with full control over I/0 functions. One of the more
powerful features is the two programmable on-chip timers
which can be utilized in your programs to achieve real-time
interrupts without tying up the processor in long loops.
With the Sound II and Sound/Speech I boards, you can use one
6522 as a timer and the other to produce continuous sound or
speech while your program continues to run. The 6522 also
contains two 8-bit bidirectional ports. Each line of each
port can be individually programmed as either an input or an
output line, thus bidirectional. (See the 6522 block
diagram in Appendix A).

*chip manufacturer may be substituted based on availablity

GENERAL INSTRUMENT AY-3-8910 PROGRAMMABLE SOUND GENERATOR

Sound I, Sound II and Sound/Speech I utilize General
Instrument's AY-3-8910 Programmable Sound Generator to
produce a remarkable variety of sound effects, from
harpsichords to gunshots. This chip was selected for
features which allow full software control of sound

0-2

generation and continuous sound without constant processor
control.

The AY-3-8910, which will be referred to as PSG, is also a
register oriented device containing 16 directly addressable
registers. All sound generation is controlled through
these registers. These registers are broken down into
functional blocks: tone generators (fine and coarse tune),
noise generator, mixers, amplitude control, envelope
generator and D/A Converters.

Sound is produced through the manipulation of these
blocks. For example, to produce a basic tone without noise,
you would reference and set each of the following: the tone
period register for one of the three channels, the channel
for tone only, the amplitude for the channel and finally,
turn off the channel to end the sound effect. More complex
sound effects can be achieved by manipulating any number of
combinations of the functional blocks. A more detailed
explanation of the registers, functions and programming
information will be given in the sections to follow.

VOTRAX SC-01 SPEECH SYNTHESIZER

Speech synthesis is accomplished through the use of Votrax's
SC-01 Speech Synthesizer. This single chip phoneme
synthesizer can produce continuous speech with a low data
rate of 70-100 bits per second. The SC-0l1 contains 64
different phonemes (basic sound units of speech) of the
English language. The phonemes are sequenced to form
continuous speech. Since the SC-0l1 stores phonemes rather
than encoded words, it can produce unlimited vocabulary, yet
requires lower data rates to output words.

The 64 phonemes are broken down into 36 vowel sounds, 25
consonant sounds, and 3 pause phonemes (which emit no
sounds). These phonemes can also be classified by the
manner in which these sounds are produced in the human vocal
tract, such as voiced sounds, fricative sounds (sounds
produced by constricting the airflow), plosive sounds
(sounds produced by stopping the airflow and then releasing
it), and nasal sounds. (See Appendix C for tables of the 64
phonemes by classification.)

Each phoneme is assigned a code which is expressed in
hexadecimal, the largest being $3F. Therefore, all phonemes
can be accessed by a 6-bit code. The remaining two bits are
accessed to set the pitch level of voiced phonemes. However,
this feature is not necessary for normal pitch levels
because inflection is automatically generated by the SC-0l.
Programming information and a more detailed explanation of
the phonemes and their concatenation will be given in the
sections to follow.

The appendices in the back of this manual contain some
technical information provided by the manufacturers of the
components described above, as well as a brief explanation
of the demonstration program on the disk.

EQUIPMENT REQUIREMENTS

Apple II or Apple II Plus

48K RAM

Disk Drive

1 External 8 ohm Speaker for Sound I and Speech I

2 External 8 ohm Speakers for Sound II and Sound/Speech I

VOLUME AND FREQUENCY CONTROL

The control devices on each board have been specially
selected and placed on the board for ease of use. Volume or
frequency is controlled by a thumb wheel device located at
the top of the board as it sits in the slot. This allows
you to adjust the volume or frequency while the boards are
in the computer. No screw driver is needed so you do not
have to pull the board out of the slot to make adjustments.

Each board has a volume control device for each speaker.
Sound I and Speech I contain one each and Sound II and
Sound/Speech I contain two each. The volume control devices
are located at the rear of the board as it sits in the
slot.

Speech I and Sound/Speech I also contain a frequency control
device to adjust the output pitch. This device is located
in front of the volume control or towards the middle of the
board as it sits in the slot.

INSTALLATION INSTRUCTIONS

Mockingboard peripherals are equipped with one (or two for
Sound II or Sound/Speech I) 1/2 watt amplifier(s). The
boards can also drive 8 ohm speakers directly or can be
connected to the auxiliary inputs of your stereo amplifier.
The board installation instruction is outlined below for
both direct speaker interface and external amplification.

Care should be taken in handling the boards. Always turn
off the computer before inserting or removing the boards
from the slot. Handle the boards by the edges, taking care
not to grab the gold plated pins.

Direct Speaker Interface

1. Make sure that the computer is off before proceeding
with the installation.

2. The board may be plugged into any slot number from 1 to
7; however, the demonstration program will access the
board in slot 4. Insert the gold plated fingers of the
board into the slot connectors and gently rock until
firmly seated.

3. Plug the cable, included in the package, into the board
with the imprinted series number side faced down.

4. Plug the speaker(s) into the cable. The plugs on the
end of the cable will plug into any RCA type phone jack.

External Amplification

1. Turn the computer off before proceeding.

2. The board may be plugged into any slot number from 1 to
7; however, the demonstration program will access the
board in slot 4. Insert the gold plated fingers of the
board into the slot connectors and gently rock until
firmly seated.

3. Plug the cable, included in the package, into the board
with the imprinted series number side faced down.

4. Connect the cable to the stereo amplifier auxiliary
%nputs. The plugs on the end of the cable will plug
into any RCA type phone jack.

Sweet Micro Systems will support the Mockingboard
Sound/Speech I board with a series of sophisticated new
adventure games. The board adds new dimensions to adventure
games, making each situation more credible and more
exciting. Characters will speak to you. Recognizable
sounds and voices will identify your location. You may be
required to make decisions in real time. Check with your
local computer store for the games or contact us for more
information.

WARRANTY REGISTRATION

Please fill out the Warranty Registration Card enclosed at
the back of this manual and return it to us. When we
receive this card, we will register you as the original
owner of this product and provide you with these services:

l. You will receive information about updates and new
products. Since we will continue to support our
hardware products with new and exciting software, we
would like to let you know first. You may also be
eligible to purchase these products at a discount.

2. We will also have a record of your purchase in case you
lose your sales slip. If this product should require
service during the warranty period, you must send proof
of purchase. Send in the card now so you won't have to
worry about it later.

3. Finally, your comments and answers to the questions on
the form will help us to design future products with our
customers in mind.

Take a moment to complete and return the registration card
now. Thank you.

SOUND I MANUAL

The_Mockingboard Sound I is a single sound effects generator
peripheral which can be incorporated into any program you
create. Sound I produces a remarkable repertoire of quality
§ounds, sqitable for any program enhancement. Programming
18 very simple and efficient. Best of all, your program
will not suffer from this enhancement because the
Progrsmmablg Sound Generator (PSG) chip requires very little
processor time to output the sound and no processor time to
Sustain 1it. Although the board can be accessed by a program
in any language, our discussion will be limited to the
demonstration program and specific listings which are in
650? assembly language. Some information on decimal
equivalent address locations is also given.

We_have included in this manual a program listing of the
Primary routines utilized on the demonstration program disk.
?hese routines consist of the INITialization of the
input/output ports; the LATCH address, WRITE to PSG and
RESET functions of the bus control lines. These functions
are used in the transfer of data and addresses to the PSG
for output of the desired sound effect. Each routine will be
exp}alned following a brief explanation of board and
register selection.

BOARD AND REGISTER SELECTION

Eéch time you wish to access the Sound I board, you must
directly address the board location and a 6522 register.
The board can be selected in the following manner:

From assembly language, the address format is:

[$Cs0r]

"$Cs" the page number (in hex) of the area in the Apple's
memory map allocated for input/output where "s" is
the slot number of the Sound I board -

"ot one of the sixteen registers (in hex) of the 6522 you
wish to access

For example, if you wish to access register "l1" and the
board is installed in slot 4, the address would be "$C401."

From Basic, the address format is:
[-16384 + (256 * g) + r]

"-16384 + (256 * s)": the decimal equivalent of "$Cs"
explained above

LA the slot number of the Sound I board

"r": one of 16 registers of the 6522

Again, if you wish to access register "1" and the board is
installed in slot 4, the address would be [-16384 + (256 *
4) + 1] or -15359.

INITIALIZATION

The 6522 contains 16 internal registers in which each
register may be accessed directly. Registers 0 and 1 are
the two 8-bit bidirectional ports through which information
is transferred. The ports are labelled "B" (register 0) and
"A" (register 1). Each line of each port can be
individually programmed as either an input or an output
line. For all intents and purposes both ports should be
initialized as output ports.

To configure the ports, a specific number must be written to
each of the Data Direction Registers, register 2 for port
“B" (DDRB) and register 3 for port "A" (DDRA). If a bit in
the number written to either DDR is designated as a zero,
the corresponding line will be an input line. However, if
the bit is a one, the corresponding line will be an output

line.

Since the Sound I board utilizes port "A" for tranferring
data and addresses to the PSG, all lines in the DDRA must be
configured for output. In other words, all 8 bits must be
set to "1." This binary number is equivalent to a "FF" in
hexadecimal or "255" in decimal and should be stored or
poked into the DDRA (or location $Cs03), respectively. See

Figure 1-1.

Figure 1-1: Primary Routines in Assembly Language

1 *PRIMARY ROUTINES
2 *FOR SOUND I
3 *BOARD IN SLOT &
4 *
by x
6 ORG $9000
7 OBJ $9000
8 * ; DECIMAL
9 *
10 ORB EQU $C400 ; =15360
11 oRA EQU $C401 ; —15359
12 DDRB EQU $C402 ; —15358
13 DDRA EQU $C403 ; =15357
14 *
Ios &

9000: A9 FF 16 INIT LDA #S$FF

9002: . 'BD.03:65 17 STA DDRA

9005: A9 07 18 LDA #$07

9007: 8D 02 c4 19 STA DDRB

900A: 60 20 RTS

900B: A9 07 21 LATCH LDA #3507

900D: 8D 00 C4 22 STA ORB

9010: A9 04 23 LDA #3804

9012: 8D 00.C4& 24 STA ORB

9015: 60 29 RTS

9016: A9 06 26 WRITE LDA #3506

9018: 8D, 00 C4 . 27 STA ORB

901B: A9 04 28 LDA #$04

901p: 8D 00 c4 29 STA ORB

9020: 60 30 RTS

9021: A9 00 31 RESET LDA #$00

9023: 8D 00 Cc4 32 STA ORB

9026: A9 04 33 LDA #3504

9028: 8D 00 C4 34 STA ORB

902B: 60 25 RTS

The DDRB should also be configured for output to the PSG.
However, Sound I utiliizes only three of the eight lines in
port "B." Two lines are connected to the two bus control
pins and the other line is connected to the reset pin of the
PSG. There are actually three bus control pins (Bus

1=3

-)

Direction, Bus Control 2, Bus Control 1); however, Bus
Control 2 is tied high (+5V). The first three lines should
be configured as "1" with the remaining five lines as "0."
This binary number is equivalent to "07" in hexadecimal or
"7" in decimal and should be stored or poked into the DDRB
(or location $Cs02), respectively. See Figure 1-1.

The 6522 will automatically reset the ports for input when
the computer is turned on or reset. Therefore, the
initialization of the ports is required only when the
computer is powered up or reset. Once the ports have been
initialized, all data written to those ports will be output
to the PSG chip. In the demonstration program, the INIT
routine begins at location $9000 (hex) or -28672 (decimal)
and is referenced immediately after the primary routines are
loaded by a CALL to the location.

LATCH, WRITE AND RESET

Now that the ports of the 6522 are initialized for output,
information can be sent to the PSG through output register
1, or port "A" (ORA). The information written to register
0, or port "B" (ORB) then tells the PSG what to do with the
information in port "A" (register 1). The signals sent by
the 6522 to the bus control pins of the PSG indicates
whether the contents of the bus in ORA is register data or
a register address. If the bus contains a register address,
the signal will indicate to the PSG that this register
should be latched (referred to as Latch Address or Latch).
If the bus contains data, the signal will indicate that the
data should be written into the currently addressed register
(referred to as Write to PSG or Write). In addition to the
Latch and Write, the ORB can also be utilized to signal a
reset to the PSG. This will clear all of the registers in
the PSG. The "signal" refers to the value of the bit
configuration of each function. See Figure 1-2 (adapted
from a diagram in the General Instrument's Programmable
Sound Generator Data Manual).

Please note that in each of these routines the bus control
lines are always brought back to an inactive state.
Inactive refers to the state of the bus line between the PSG
and 6522. The 6522 signals to the PSG that no action is to
be taken with the data on the line. The bit configuration
for Inactive is equivalent to "$04" in hexadecimal or "4" in

ik

dec&mﬁl because the Reset pin, in normal operation, is set
at "l." See Figure 1-1 for Primary Routines listing.

Figure 1-2: Truth Table for Bus Control Line

PSG FUNCTION RESET BDIR BCl HEX DEC
INACTIVE 1 0 0 #5804 4
READ FROM PSG 1 0 1 #3805 5
WRITE TO PSG 1 1 0 #506 6
LATCH ADDRESS 1 1 1 #$07 7
RESET 0 0 0 #500 0

The Read from PSG function, shown in Figure 1-2, enables
data to be output by the PSG. This will enable you to read
data from any PSG register. The Data Direction Register of
the 6522 must be re-initialized for input. Although not
possible on the Sound I board, this function also allows you
to read from other peripheral via the PSG I/0 ports. This
function is not covered in this manual as we have limited

our discussion to those functions involved in the output of
sounds.

PSG REGISTERS

Figure 1-3 is a table of PSG registers and their bit
configurations (printed with permission of General
?nstrument). As each register function is described below,
it may be helpful to refer to this table from time to time.

(Please note that the registers are labelled in decimal with
the hexadecimal equivalence in the margin.) .

Figure 1-3 PSG Registers

BT o7 | o6 | os | Ba | B3 | B2 | &1 | B0
REGISTER
P B-BIT Fine Tune A
o Channel A Tone Period //WW 4-BIT Coarse Tune A
A2) B-BIT Fine Tune B
-~ Channel B Tone Period W/////////A 4-:|T Coarse Tune B
7y B8-BIT Fine Tune

S Channel C Tone Period Wm R TR
R6 Noise Period 7/‘//‘//////////% 5-BIT Period Control

S A iN/OUT Noise Tone
R7 Enable
10B| 0a| cC B A e B8 A

R8 | Channel AAmpliude Y 04 m | 13 L2 L1 Lo
RO | cramneiBampiwge P4 m | 3 | e | LO
RA | R10 Channel C Amplitude W////y//j M L3 L2 L1 LO

RB | R11 B-BIT Fine Tune E
Envelope Period
RC] R12 B8-BIT Coarse Tune E
ro | m13 | Envelope Shapercycte 1 4 conT] ATT | aiT | HoLD
RE R14 1/0 Port A Data Store 8-BIT PARALLEL VO on Port A

RF R15 /O Port B Data Store B-BIT PARALLEL YO Port B

The first six registers (R0O-R5) set the tone period for each
of the three channels (A, B, C). Each tone period is broken
down into an 8-bit fine tune register and a 4-bit coarse
tune register. The tone period together with Apple's clock
frequency produces the desired tone frequency. The
relationship is expressed in the following equation:

Tone Frequency = Clock Frequency/(l6 * Tone Period)

where: Tone Period = 256 Coarse Tune + Fine Tune
(all values are expressed in decimal)

Register 6 is the noise generator control. The noise period
is set by the lower 5-bits of register 6. The noise
frequency output is produced by the 5-bit noise period value
and Apple's clock frequency and is expressed in the
following relationship:

Noise Frequency = Clock Frequency/(16 * Noise Period)
(Noise Period expressed in decimal)

Register 7 is the mixer control which enables tone and/or
noise outputs on selected channels. The lower 3-bits enable
the tone generators for each channel. The next 3-bits
enable the noise generator for each channel. The last 2-
bits control the direction of the two general purpose I1/0
ports which are not accessible on the Sound I board.

The tone/noise on any channel is disabled by a high bit or
"1" and enabled by a low bit or "0." A table of bit
configuration for possible combinations is given in Figure
1-4 (adapted from a diagram in General Instrument's
Programmable Sound Generator Data Manual).

Figure 1-4: Noise and Tone Enable Truth Table

I/0 PORTS NOISE ENABLE TONE ENABLE NOISE/TONE
NOT USED BIT VALUE BIT VALUE ENABLED ON
B7 B6 B5 B4 B3 B2 Bl B0 CHANNEL
X X 0 0 0 00 6 C, B, A

202 6 .0,k 0107 i c, B
X X R S B fo 10 C, A

XX b intas:i e c
X X sy B b s B B, A
X X TN e B
£ . X Mo b @ Y. i A
.. X 35 i o I NONE

Where X = Not Significant 0 = Enable 1 = Disable*
*Disabling does not turn off a channel.
See Amplitude Control Register.

Since the I/0 ports cannot be utilized on the Sound I board,
the bit value has no significance except when determining
the hexadecimal or decimal equivalent of the eight bit
register value.

If, for example, we wish to output a tone frequency on
channel A only, we would look up in the table the necessary
bit configuration for tone enabled on channel A. The 8-bit
value would be: XX111110. The noise would be disabled in
all three channels (111) and the tone would be enabled on
channel A only (110). If the "X's" were replaced with
"0's," the value in hexadecimal would be "#$3E" (0011, 1110)
and in decimal it would be "62."

Registers 8, 9 and A (or 8, 9 and 10) control the amplitude
for each channel (A, B and C, respectively). The amplitude
is determined by the lower 5-bits of each register. The
fifth bit, referred to as the amplitude mode, determines
whether the amplitude level is fixed or variable. When this
bit is set equal to "0" (fixed), the amplitude level, in a
sense, is manually controlled by your program since any
variation in amplitude levels must be individually written
to the PSG. The lower 4-bits fix the amplitude at one of
sixteen levels. When all 4-bits are set to zero, a channel
is turned off.

If the fifth bit is set equal to "1" (variable), the
amplitude level is determined by the envelope pattern and
the lower 4-bits become inactive. This will free the
processor to continue with the program at hand. Both sound
output and program processing can occur simultaneously for
any length of time, as long as the envelope generator is not
interrupted. The envelope generator will be discussed next.

Registers B, C and D (or 11, 12 and 13) control the
generation of envelope patterns. Registers B and C control
the frequency of the envelope while register D controls the
relative shape and cycle pattern of the envelope.

The contents of registers B (fine tune) and C (coarse tune)
are combined to produce a l6-bit envelope period value. This
value in relationship with Apple's clock frequency produces
the frequency of the envelope. The equation which expresses
this relationship is as follows:

Envelope Frequency = Clock Frequency/(256 * Envelope Period)

Envelope Period = 256 * Coarse Tune + Fine Tune
(all values are expressed in decimal)

where:

The envelope shape and cycle pattern is controlled by the
bit configuration of the lower 4-bits in register D. Each
of the 4-bits controls a function in the envelope generator.
The first bit is the Hold function which when set to "1,"
limits the envelope to one cycle and holds the last count.
The second bit is the Alternate function which when set to
"1," reverses the count direction (up-down) after each
cycle. The third bit is the Attack function which when set
to "1," will count up (attack) and will count down when set
to "0" (decay). The last bit is the Continue function which

1-8

thn set to "1," will take its cue from the Hold bit. 15
Ehls bit is set to "0," the envelope generator will reset to
0000" after one cycle and hold that count. See Figure 1-5
(printed with permission of General Instrument).

The last two registers are the 8-bit I/0 ports. These

registers are not used in the production of sound and cannot
be used on the Sound I board.

Figure 1-5 Envelope Shape/Cycle Control

A
c 1
o T
N|A|E
T|T|R
1| T| Nl H
Nl Al Al O GRAPHIC REPRESENTATION
uliel Tl L OF ENVELOPE GENERATOR
E|K|E|D OUTPUT E3 E2 E1 EO.

o ofx| x|\
o] 1| x x//1

) ° °\I\N\J\N\j\l\l\
110]o0 1\7/5%&9 8 for detail

1011“
l|'|U1/
1111/

=i EP |'-— EP IS THE ENVELOPE PERIOD
(DURATION OF ONE CYCLE)

TABLE ACCESS ROUTINE

In theory, a sound is generated by the Sound I through a
process of addressing and storing values in the appropriate
registers of the PSG. A simple LDA (load the accummulator)
and STA (store the accummulator) command in assembly
language or a POKE command in Basic would achieve the
desired sound effect. This would also prove to be a very
tedious programming task and an inefficient use of memory
space. A better and more efficient method is to set up a
table of values and use a table access routine to take the
values and store them in each of the 16 registers in
succession.

Figure 1-6: Table Access Routine in Assembly Language

1 *TABLE ACCESS ROUTINE
2 *FOR MODEL SOUND I
3 *BOARD IN SLOT 4
4 ORG $8000
5 OBJ $8000
6 PTR EQU $08
7 ORA EQU $C401
8 LATCH EQU $900B
9 WRITE EQU $9016
10 RESET EQU $9021
13 ®
8000: 20 21 90! 12 START JSR RESET
8003: A0 00 13 LDY #$00
8005: 8C 01 Cc4 14 LoOP STY ORA
8008: 20 OB 90 15 JSR LATCH
800B: Bl 08 16 LDA (PIR),Y
800D: 8D 01 c4 17 STA ORA
8010: 20 16 90 18 JSR WRITE
8013: CO OF 19 CPY #$0F
8015: FO 04 20 BEQ DONE
8017: C8 21 INY
8018: 4C 05 80 22 JMP LOOP
801B: 60 23 DONE RTS

The 1listing of the table access routine used in the
demonstration program is shown in Figure 1-6. The data
values for each sound effect is stored in a particular

memory location in register order. In other words, the first
data value corresponds to register 0, the second value to

1-10

register 1, etc. You must poke or load the address of the
first data value at the memory location specified in the
pointer. The content of the pointer will be indexed by the
Y-register (in assembly language this is accomplished
through indirect indexed addresssing) so that each data
value will be written to its corresponding register. The
routine will latch the register address (the counter value)
and write the data to the PSG in successive order. Each
sound effect will have its own location, which may be spaced
16 bytes (onme byte for each register) apart.

The demonstration program loads the table access routine at
location $8000 in hexadecimal or -32768 in decimal. The
pointer stores the address for a sound effect in location
$08 or 8 in decimal. The remaining locations are from the
primary routines shown in Figure l1-l. Since the table
access routine references the addresses of the primary
routines, this must be loaded into memory prior to using the
table. Also, since it is recommended that you clear the PSG
chip before attempting to output the desired sound effect, a
JSR (Jump to SubRoutine) to the reset function has been
incorporated in the table access routine.

12

SOUND II MANUAL

The Mockingboard Sound II is a dual sound effects generator
peripheral which can be incorporated into any program you
create. The attractive feature of this board design is that
two independent sounds can occur simultaneously, through one
speaker or two. This is achieved through two separate sound
generation systems. Two programmable sound generator chips
(PSG) together with their own 6522 interface chip outputs
the sounds independent of each other and still allows the
Apple's processor to continue with the program. This
versatile sound generation system will allow you to create
richer and more dynamic sound effects. By taking the same
sound effect and slightly delaying the output of one chip,
you can produce a very full and powerful sound. Delay it
even longer and you can produce a totally different sound
effect. The Sound II is actually made up of two Sound 1
boards but can be accessed through one slot.

Since the Sound II board contains the same programming
features as the Sound I, the information that follows is
intended only to point out the differences. Please read the
Sound I Manual, which precedes this section.

BOARD AND REGISTER SELECTION

Accessing the Sound II board involves the same process;
however, in order to produce two independent sounds you must
address each 6522 from a different entry point, $CsOr or
§Cs8r. The board can be selected in the following manner:

From assembly language, the address format is:
[$CsOr] [$Cs8r]

"$Cs" the page number (in hex) of the area in the Apple's
memory map allocated for input/output where "s" is
the slot number of the Sound II board

"0r" one of the sixteen registers (in hex) of the first
6522 you wish to access

"8r" one of the sixteen registers (in hex) of the second
6522 for outputting another sound

For example, if you wish to access register "l1" of the first
6522 and the board is installed in slot 4, the address would
be "$C401. The address for the second 6522's register "1"
would be $C48l.

From Basic, the address format is:
[-16384 + (256 * 8) + r] [-16384 + (256 * s) + 128 + r]

"-16384 + (256 * s)": the decimal equivalent of "$Cs"
explained above

i Ay the slot number of the Sound II board
"r": one of 16 registers of the first 6522
"128 + r": one of 16 registers of the second 6522

Again, if you wish to access register "1" of the first 6522
and the board is installed in slot 4, the address would be
[-16384 + (256 * 4) + 1] or -15359. The address for the
board and register "1" of the second 6522 would be [-16384 +
(256 * 4) + 128 + 1] or -15231.

INITIALIZATION, LATCH, WRITE AND RESET ROUTINES

The definitions and explanations of each of these routines
in the Sound I Manual also apply to the Sound II. Again,
since there are two Sound I systems on this board, these
routines apply to both separately. To be consistent in our
explanation of the Sound II as two independent sound
generating systems, the following listing of the Primary
Routines contain two sets of routines. Two sets are
not necessary and other more efficient methods can be used.

9000:
9002:
9005:
9007 :
900A:
900B:
900D:
9010:
9012:
9015:
9016:
9018:
901B:
901D:
9020:
9021:
9023:
9026 :
9028:
902B:
902C:
902D:
902F:
9032:

Figure 2-1:

A9
8D
A9
8D
60
A9
8D
A9
8D
60
A9
8D
A9
8D
60
A9
8D
A9
8D
60
00
A9
8D
A9

FF
03
07
02

07
00
04
00

06
00
04
00

00
00
04
00

FF
83
07

C4

C4

C4

c4

Ch
Ch

C4

A

C4

Primary Routines in Assembly Language

woo~N L N =

B b= b et bt et bt et et e
Cwoo~NOTUVMPEPWLWNEDO

MR R
NV W N -

WM
o w

W W W
w N =

W wWwww
o~ Oy B

£ W
WP -=ow

*PRIMARY ROUTINES

*FOR SOUND II

*BOARD IN SLOT 4

*
*

ORB
ORA
DDRB
DDRA
ORB2
ORA2
DDRB2
DDRA2

INIT

LATCH

WRITE

RESET

INIT2

ORG
0BJ

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

LDA
STA
LDA
STA
RTS
LDA
STA
LDA
STA
RTS
LDA
STA
LDA
STA
RTS
LDA
STA
LDA
STA
RTS
BRK
LDA
STA
LDA

$9000
$9000

$C400
$c401
$C402
$C403
$C480
$c481
$C482
$C483

#SFF
DDRA
#507
DDRB

#$07
ORB
#$04
ORB

#3506
ORB
#504
ORB

#3500
ORB
#3504
ORB

#SFF
DDRA2
#3507

M W e e e W e W

DECIMAL

-15360
=15359
-15358
=15357
-15232
-15231
-15230
-15229

the primary routines, this must be loaded into memory prior
to using the table. Also, since it is recommended that you
clear both PSG chips before attempting to output the desired
sound effect, a JSR (Jump to SubRoutine) to RESET has been
incorporated in the routines.

9034: 8D 82 C4 44 STA DDRB2
9037: 60 45 RTS

9038: A9 07 46 LATCH2 LDA #3507
903A: 8D 80 C4& 47 STA ORB2
903D: A9 04 48 LDA #3504
903F: 8D 80 C4 49 STA ORB2
9042: 60 50 RTS

9043: A9 06 51 WRITE2 LDA #3506
9045: 8D 80 C4 52 STA ORB2
9048: A9 04 53 LDA #$04
904A: 8D 80 C4 54 STA ORB2
904D: 60 55 RTS

904E: A9 00 56 RESET2 LDA #$00
9050: 8D 80 C4 57 STA ORB2
9053: A9 04 58 LDA #504
9055: 8D 80 C4 59 STA ORB2
9058: 60 60 RTS

In the demonstration program, the INIT routine begins at
location $9000 (hex) or -28672 (decimal) and INIT2 begins at
location $902D (hex) or —~28627 (decimal). Both should be
referenced immediately after the primary routines are
BLOADed by a CALL to the locations.

PSG REGISTERS

The last two registers are the 8-bit I/O ports. These
registers are not used in the production of sound but can be
used on the Sound II board for add-on peripherals. Pin
holes to both chips have been provided on the board. (The
pin holes are not available on the Sound I board.)

TABLE ACCESS ROUTINE

The demonstration program stores the table access routine
at location $8000 in hexadecimal or -32768 in decimal for
the first sound generating system and at $801D in
hexadecimal or -32739 for the second. The first pointer,
PTR, stores the address for a sound effect in location $08
or 8 and the PTR2 stores it in $0A or 10. The remaining
locations are from the primary routines shown in Figure 2-1.
Since the table access routine references the addresses of

2-4

Figure 2-2: Table Access Routine in Assembly Language
1 *TABLE ACCESS ROUTINE
2 *FOR MODEL SOUND II
3 *BOARD IN SLOT 4
L %
5 *
6 ORG $8000
i OBJ $8000
8 *
9 *
10 PTR EQU $08
11 ORA EQU $cC401
12 LATCH EQU $900B
13 WRITE EQU $9016
14 RESET EQU $9021
15 PTR2 EQU $0A
16 ORA2 EQU $C481
17 LATCH2 EQU $9038
18 WRITE2 EQU $9043
19 RESET2 EQU $904E
20 =*
2B ®
8000: 20 21 90 22 START JSR RESET
8003: A0 00 23 LDY #$00
8005: 8C 01 C4 24 LOOP STY ORA
8008: 20 OB 90 25 JSR LATCH
800B: Bl 08 26 LDA (PTR),Y
800D: 8D 01 c4 27 STA ORA
8010: 20 16 90 28 JSR WRITE
8013: CO OF 29 CPY #$0F
8015: FO 04 30 BEQ DONE
8017: 8 33 INY
8018: 4C 05 80 32 JMP LOOP
801B: 60 33 DONE RTS
801c: 00 34 BRK
801D: 20 4E 90 35 START2 JSR RESET2
8020: A0 00 36 LDY #$00
8022: 8C 81 C4 37 LOOP2 STY ORA2

8025:
8028:
802A:
802D:
8030:
8032:
8034:
8035:
8038:

20
Bl
8D
20
co
FO
c8
4C
60

38
0A
81
43
OF

22

90

C4
90

80

38
39
40
41
42
43
o
45
46 DONE2

JSR
LDA
STA
JSR
CPY
BEQ

JMP
RTS

LATCH2
(PTR2),Y
ORA2
WRITE2
#$0F
DONE2

LOOP2

SPEECH I MANUAL

The Mockingboard Speech I is a speech synthesizer peripheral
which utilizes phonemes as a basis for producing continuous
speech. Phonemes are basic units of sound in a language
which when blended together forms speech. The 64 phonemes
present on the SC-01 are identified as the phonemes of the
English language. Therefore, the vocabulary in English will
be unlimited and you will probably be able to create some
foreign words as well. (Please refer to Appendix C for
table of phonemes.)

According to the linguist, phonemes are identified through
contrast. For example, in contrasting the pronunciation of
the words "bat" and "cat," you find they only differ by one
phoneme (the phonemes /b/ and /c/). This example shows the
contrast between monosyllabic words and identifying the
phoneme sequence to produce these words should be an easy
task. However, identifying the phonemes for multisyllabic
words may be a bit more difficult because some phonemes vary
minimally and other phonemes differ in duration. Some also
serve as transitional phonemes to produce a smoother
pronunciation.

Some guidelines for sequencing phonemes are available (see
appendix C for sources), however, the most effective method
is pronouncing each sound of the word out loud. You will
find yourself becoming an active listemer and analyzing
subtle differences. BEWARE: a strange metamorphosis may
occur as you begin speaking like the machine in order to
make your machine speak like you.

BOARD AND REGISTER SELECTION

Each time you wish to access the Speech I board, you must
directly address the board location and a 6522 register.
The board can be selected in the following manner:
From assembly language, the address format is:

[SCs0r]

"$Cs" the page number (in hex) of the area in the Apple's
memory map allocated for input/output where "s" is

the slot number of the Speech I board

| |

"Or" one of the sixteen registers (in hex) of the 6522 you
wish to access (to be explained shortly)

For example, if you wish to access register "1" and the
board is installed in slot 4, the address would be "$C401.

From Basic, the address format is:
[-16384 + (256 *) + r]
"-16384 + (256 * s)": the decimal equivalent of "$Cs"
explained above

s": the slot number of the Speech I board
r": one of 16 registers of the 6522

Again, if you wish to access register "1" and the board is
installed in slot 4, the address would be [-16384 + (256 *
4) + 1] or -15359.

INITIALIZATION

The 6522 contains 16 internal registers in which each
register may be accessed directly. Registers 0 and 1 are
the two 8-bit bidirectional ports through which information
is transferred. The ports are labelled "B" (register 0) and
"A" (register 1). Each line of each port can be
individually programmed as either an input or an output
line. Since each phoneme requires only a 6-bit code to
output speech through the SC-0l1, only port "B" will be
initialized for output.

To configure the port, a specific number must be written to
the Data Direction Registers (register 2 for port "B"
(DDRB)). If a bit in the number written to DDRB is
designated as a zero, the corresponding line will be an
input line. However, if the bit is a one, the corresponding
line will be an output line.

Since the Speech I board utilizes port "B" for tranferring
the phoneme code to the SC-01, all lines in the DDRB must be
configured for output. In other words, all 8 bits must be
set to "l." This binary number is equivalent to a "FF" in
hexadecimal or "255" in decimal and should be stored or
poked into the DDRB (or location $Cs02), respectively. See
Figure 3-1.

3-2

Also initialized are registers 13 and 14 (or C and D), the
Peripheral Control Register (PCR) and the Interrupt Flag
Register (IFR), respectively. The 6522 allows handshake
control of the data transfer between the Apple's processor
and the SC-01 through the PCR. Handshaking refers to the
interaction of the "Data Ready" signal gemerated by the 6522
and the '"Data Taken" signal from the SC-01 which regulates
the flow of data. This handshaking operation is used on the
Speech I board to check for the completion of the output of
a phoneme before the next phoneme is sent. This check
routine will be discussed next.

Port B lines handshake on a write operation only, or when
data is transferred from the Apple's processor to the SC-01
(which is what we want). The configuration of the high
order bits of the PCR select the operating mode of the port
B lines. Bits 7-5 act as a "Data Ready" output and bit 4,
which is the interrupt control, accepts the "Data Taken"
signal from the SC-0l. The binary equivalent for
initializing the PCR in hexadecimal is #$B0 and in decimal
it is 176. (The configuration of the lower order bits are
insignificant since port A lines are not utilized by the
Speech I.) The interrupt flag is set when the "Data Taken"
signal is accepted and must be cleared before proceeding.
This is accomplished by the IFR. The binary equivalent for
initializing the IFR in hexadecimal is #$10 and in decimal
it 18 16.

CHECK ROUTINE

The check routine, as mentioned before, looks for the
completion of an output. More specifically, it is looking
for the interrupt flag to be set before clearing the flag
and outputting the next phoneme. The routine will continue
in a loop until it is detected.

Figure 3-1: Primary Routines in Assembly language

1 *PRIMARY ROUTINES
2 *FOR SPEECH I
3 *BOARD IN SLOT &
4 *
5 *
6 ORG $9000
7 OBJ $9000
8% ;DECIMAL
9 ORB EQU $C400 ; -15360
10 DDRB EQU $C402 ; -15358
11 PCR EQU $C40C ; -15348
12.. IFR EQU $C40D ; -15347
13

9000: A9 FF 14 INIT LDA #S$FF

9002: 8D 02 Cc4 15 STA DDRB

9005: AD OC C& 16 LDA PCR

9008: 09 BO 17 ORA #5$B0O

900A: 8D OC C4 18 STA PCR

900D: A9 10 19 LDA #$10

900F: 8D 0D C4 20 STA 1IFR

9012: 60 21 RTS

9013: 48 22 CHK PHA

9014: A9 10 23 LOOP LDA #8510

9016: 2C OD C4 24 BIT IFR

9019: FO F9 25 BEQ LOOP

901B: 8D OD C4 26 STA IFR

90lE: 68 27 PLA

901F: 8D 00 C4 28 STA ORB

9022: 60 29 RTS

TABLE ACCESS ROUTINE

A table access routine can be utilized to output continuous
speech by setting up a table of phoneme codes for a
particular word or phrase you wish to output. This routine
will output each phoneme code and check for its completion
before accessing the next code.

The listing of the table access routine used in the
demonstration program is shown in Figure 3-2. The phoneme
codes for each word or phrase are stored in a table which
can be accessed by referencing the location of the first

3-4

phoneme code. Each word or phrase will have its own location
in memory. The table location for the demonstration program
is located at $8100 (in hex) or -32512 (in decimal). You
must poke or load the address of the first phoneme code at
the memory location specified in the pointer. This phoneme
will then be spoken by the SC-0l. During this process, the
table access routine will jump to the "CHK" subroutine in
the primary routines and return for the next phoneme when
the SC-01 has finished speaking. The content of the pointer
will be indexed by the Y-register (in assembly language this
is accomplished through indirect indexed addresssing) so
that the next phoneme can be accessed. The counter will
continue to increment until it reaches a marker which will
indicate the end of the word or phrase. The marker in the
table access routine of this demonstration program is #$3F
or 63. This value is also the phoneme code for "stop" (stop
speaking). The marker should be the last code in each
word or phrase in the table.

The demonstration program stores the table access routine at
location $8000 in hexadecimal or -32768 in decimal. The
pointer stores the address for the word or phrase in
location $06 or 6. The remaining location is from the
primary routines shown in Figure 3-1l. Since the table
access routine references the addresses of the primary
routines, this must be loaded into memory prior to using the
table.

Figure 3-2: Table Access Routine in Assembly Language

1 *TABLE ACCESS ROUTINE

2 *FOR MODEL SPEECH I
3 *BOARD IN SLOT 4

4 ok

5 *

6 ORG $8000
7 OBJ $8000
8 *

g *

10 PTR EQU $06
11 ORB EQU $C400
12 CHK EQU $9013
13 =

14 *

8000: A0 00 15 START LDY #3500

8002:
8004:
8007:
800A:
800C:
800E:
800F:
8012:

Bl
8D
20
c9
FO
c8
4C
60

06
00 Cc4
13 90
3F
04

02 80

16 LOOP
17
18
19
20
21
22
23 DONE

LDA
STA
JSR
CMP
BEQ

RTS

(PTR),Y
ORB

CHK
#S83F
DONE

LOOP

;MARKER

SOUND/SPEECH I MANUAL

The Mockingboard Sound/Speech I is a combination sound
effects generator and speech synthesizer peripheral. The
Sound/Speech I is a powerful board because of its
versatility. Not only can this board produce a single or
continuous sound or speech, it can also produce simultaneous
sound and speech. A continuous sound effect can be a very
effective background for speech. Creating interaction
between the two sounds is unlimited. You can also have
simultaneous sound effects since speech sounds can be
intentionally garbled to produce an effect rather than
intelligable speech.

The board incorporates the Mockingboard Sound I and Speech
I in their entirety and without compromise. They are in
actuality a separate sound generating system and a speech
generating system physically placed on one board. The
advantage to this design is that both systems can be
accessed and controlled through the same peripheral slot and
still output sounds simultaneously. The features in each
system have been previously explained. The following
information is intended only to point out the differences.
Please read the Sound I and Speech I sections.

BOARD AND REGISTER SELECTION

The board is accessed in the same manner as described in the
previous sections by directly addressing the board location
and a 6522 register. The difference is that since each
system is independent of the other and interfaced by its own
6522, the address locations must also be different. The
speech generating system uses the same address format as
described in the Speech I manual. The sound effects system
uses a slightly different address format as described below.
From assembly language, the address format is:

Speech = [$CsOr] Sound = [$Cs8r]

"$Cs" the page number (in hex) of the area in the Apple's
memory map allocated for input/output where "s" is
the slot number of the Sound/Speech I board (the

same for both systems)

"0r" one of the sixteen registers (in hex) of the speech
system's 6522 you wish to access
"8r" one of the sixteen registers (in hex) of the sound

system's 6522 you wish to access

For example, if you wish to access register "l" of the
speech system's 6522 and the board is installed in slot 4,
the address would be "$C401." The address for register "1"
of the sound system's 6522 in slot 4 would be "$C481."

From Basic, the address format is:

Speech = [-16384 + (256 * s) + r]
Sound = [-16384 + (256 * s) + 128 + r]

"_16384 + (256 * s)": the decimal equivalent of "$Cs"
explained above

Hg'. the slot number of the Sound/Speech I board

"r": one of 16 registers of the speech system's 6522

"128 + r": one of 16 registers of the sound system's 6522

Again, if you wish to access register "1" and the board is
installed in slot 4, the address would be [-16384 + (256 *
4) + 1) or -15359 for speech and [-16384 + (256 * 4) + 128 +
1] or -15231 for sound.

PRIMARY ROUTINES

To be consistent in our explanation of the Sound/Speech I as
two independent systems, the listing of the Primary Routines
given in Figure 4-1 contain both primary routines for the
Sound I and Speech I. Only the address for the sound system
is different, as explained above. Again, it is important to
stress that these are two independent systems and must be
programmed as separate entities. By simply referencing the
appropriate 6522, you will be able to program that
particular system.

Figure 4-1: Primary Routines for Sound/Speech I in Assembly

9000:
9002:
9005:
9008:
900A:
900D:
900F :
9012:
9013:
9014:
9016:
9019:
901B:
901E:
901F:
9022:
9023:
9025:
9028:
902A:
902D:
902E:
9030:
9033:
9035:

A9
8D

09
8D
A9
8D
60
48
A9
2C
FO
8D
68
8D
60
A9
8D
A9
8D
60
A9
8D
A9
8D

FF
02
0c
BO
oc
10
0D

10
oD
F9
oD

00

FF
83
07
82

07
80
04
80

C4
C4

C4

C4

C4

C4

C4

C4

Ch

Ch4

C4

Loeedaounm PP =

*PRIMARY ROUTINES

*FOR SOUND/SPEECH I

*BOARD IN SLOT 4
*

%

ORG $9000

0BJ $9000
. ;DECIMAL
*
ORB EQU $C400 ; -15360
DDRB EQU $C402 ; -15358
PCR EQU $c40C ; -15348
1FR EQU $C40D ; -15347
ORB2 EQU $c480 ; -15232
ORA2 EQU $C481 ; -15231
DDRB2 EQU $C482 ; -15230
DDRA2 EQU $C483 ; -15229
*
*®
INIT LDA #SFF

STA DDRB

LDA PCR

ORA #S$BO

STA PCR

LDA #S$10

STA IFR

RTS
CHK PHA
LOOP LDA #$10

BIT 1IFR

BEQ LOOP

STA 1IFR

PLA

STA ORB

RTS
INIT2 LDA #S$FF

STA DDRA2

LDA #3507

STA DDRB2

RTS
LATCH2 LDA #$07

STA ORB2

LDA #3504

STA ORB2

4-3

9038: 60 45 RTS

9039: A9 06 46 WRITE2 LDA #$06
903B: 8D 80 C4 47 STA ORB2
903E: A9 04 48 LDA #8304
9040: 8D 80 C4 49 STA ORB2
9043: 60 50 RTS

9044: A9 00 51 RESET2 LDA #S$00
9046: 8D 80 C4 52 STA ORB2
9049: A9 04 53 LDA #504
904B: 8D 80 C4 54 STA ORB2
904E: 60 55 RTS

The demonstration program stores the INIT routines beginning
at location $9000 (hex) or -28672 (decimal) for initializing
the registers for speech output. INIT2 begins at location
$9023 (hex) or =-28637 (decimal) for initializing the
registers for sound output. Both should be referenced
immediately after the primary routines are BLOADed, by a
CALL to the locations.

PSG REGISTERS

The last two registers of the PSG chip on the sound system
are the 8-bit I/0 ports. These registers are not used in
the production of sound but can be used on the Sound/Speech
I board for add-on peripherals. Pin holes to this chip have
been provided on the board. (This feature is not available
on the Sound I board.)

TABLE ACCESS ROUTINE

The demonstration program stores the table access routine at
location $8000 in hexadecimal or -32768 in decimal for the
speech system and at $8014 or -32748 for the sound system.
The first pointer stores the address for the word or phrase
in location $06 or 6 and PTR2 stores the address for a sound
effect in location $08 or 8. The remaining location is from
the primary routines shown in Figure 4-1. Since the table
access routine references the addresses of the primary
routines, this must be loaded into memory prior to using the
table. Also, since it is recommended that you clear the PSG
chip before attempting to output the desired sound effect,
a JSR (Jump to SubRoutine) to RESET has been incorporated in
the routine.

b=4

Figure 4-2:

8000:
8002:
8004 :
8007 :
800A:
800cC:
800E:
800F:
8012:
8013:
8014:
8017:
8019:
801C:
801F:
8021:
8024 :
8027:
8029:
802B:
802C:
802F:

Table Access Routine in Assembly Language

A0
Bl
8D
20
c9
FO
c8
4C
60
00
20
AD
8C
20
Bl
8D
20
co
FO
c8
4C
60

00
06
00
13
3F
04

02

00
8A
2E
06
81
39
OF
04

19

C4
90

80

90

Ch
90

C4
90

80

WO Oy W

*TABLE ACCESS ROUTINE
*FOR MODEL SOUND/SPEECH I
*BOARD IN SLOT 4

*
*

*
*

PTR
ORB
CHK
PTR2
ORA2
LATCH2
WRITE2

RESET2
*

*

START
LOOP

DONE

START2

LOOP2

DONE2

ORG
0BJ

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

LDY
LDA
STA
JSR
CMP
BEQ
INY
JMP
RTS
BRK
JSR
LDY
STY
JSR
LDA
STA
JSR
CPY
BEQ
INY
JMP
RTS

$8000
$8000

$06

$C400
$9013
$08

$C481
$902E
$9039
$9044

#$00

(PTR),Y

ORB

CHK

#$3F ;MARKER
DONE

LOOP

RESET2
#3500
ORA2
LATCH2
(PTR2),Y
ORA2
WRITE2
#$0F
DONE2

LOOP2

INTERRUPT <
CONTROL
FLAGS INPUT LATCH
(IFR) {IRA)
|.|V ||||||||| SEE e R
ENABLE OUTPUT BUFFERS
{1ER) ”__V (ORA] (PA) PORTA
||||||||| -
pata || DATA DIR.
i AU. BUS (DDRA]
BUFFERS [
o PORT A REGISTERS
= PERIPHERAL
H HV {PCR)
< AUXILIARY PORT A s
M (ACR) v llllllllll CA2
- FUNCTION PORT B
o CONTROL
= HANDSHAKE
H CONTROL
H LATCH m LATCH
R TIL-H p
= -|H|W|_||+||WHWwi| SHIFT REG. s
= R r——— H (SR) cB2
2 COUNTER | COUNTER
= e (TiCH) | (TICL)
= (177 N :
— CHIP TIMER 1 PORT B REGISTERS
= T8 ————=1 ACCESS
% RS0—————ea] CONTROL TIMER 2 INPUT LATCH
(IRB)
H Ao paTeRl L I el
== (1 CR— (TaL-L)
1 | | L2 L i e o
A__ H RE3 e COUNTER COUNTER B n e
o (T2CH) (T2¢-L) e
X O {DDRB)
— o
e S
— -
S
o, m Figure 1. SY6522 Block Diagram
A =
< 5
w

o
I
=

APPENDIX B

For
General

< Iy
S o
-]]
R -
w
P QLo
= (-
- 9o 2
] AH]
o gmtJ
g avah
B B a8 0
e
= s P e
= Sw ©
r’
eu%m.
.h..eP.m
W @
(T) = @ sl
(=} Oyus b
= + o
P &,o a
o SnnS-
- Pooum
9 -
o - @
S S w85
1 oA
Lol fsdend
H o B wouwx
H g M
= merevm
2238
Uy
ghn.mw
& o S e
H e
M dwl.r”l
= % gl
Cdoe.l_
So.g 8
agsiEa
o
= o @Y
23] S HY g.A
T HooowH o

Klewwns 13)si6ay |eusaiu| ZZS9AS

., @jeyspuey,, o 1daox3 | bay se swes | wH1/VHO L I L l Gl

Ja1s1bay ajqeu3 idniiaiu| H3l| O L L L vl

1a1sibay be|4 1dnuiaiu| Hdl L 0 L L €l

Ja1sibay jonuo) [esaydiiag H40d| 0 0 L l 4}

Jaisibay |011u0] AseljIXny HOV | L I 0 L L

Ja1s1bay HIUS HS| 0 L 0 : o]

121un0Y 18pI0-YbIH Z L H-0ZL L 0 0 l 6

131Un0) 18pJQ-MOT ZL | SaydieT] JapJO-mOT ZL e, S o 0 0 | 8

sayale] JapJQ-ubtH L1 HatL| L L L 0 L

sayoie JapiQ-moT LL L | © 1 L 0 9

121unoY 13pJ0-YbiH LL HOLL L 0 L 0 S

131UN0Y 4aPIO-MOT || | SaydleT 4apiQ-moT LL noil| © 0 L 0 v

.Y, 481sibay uondaliQ eieg vdaa L L 0 0 £

..8,, 1a1s1bay uonoalQg eleg gyaa| o L 0 0 Z

.Y, 121s1bay 1ndu| .., 181sibay 1ndinQ | vHI/VHO L 0 0 0 l

..8., 481516ay 1ndu) .8, 1a1sibay 1nding | g41/840| O 0 0 0 0
| peay allIM ‘Bisa@ 0SY | LSY | ZsH | €sH lsquiny
A! uondiiosaq 1215163y Buipon Sy 1915163y

The block diagram and internal register summary of the

SY6522 was printed with permission of Synertek Inc.

contact:

the SY6522 VIA,

For additional information on

MS60,

Microprocessor Applications, Synertek, P.0. Box 552

CA 95052.

Santa Clara,

Fig. 2 PSG BLOCK DIAGRAM

CLOCK

AS AB BDIR BC2 BC1 DA7-DAO 25
NN YN
- RESET
REGISTERS
- o
8 8
// y /
BUS >
BI-DIRECTIONAL
- CONTAOL BUFFER NOISE
DECODE \ S GENERATOR
‘\
4 1 T [}
1 1 L I
T | a7 | s | 8s | B4 | 83 | B2 | 81 | B0
S REGISTER y3x12
™ RO B-BIT Fine Tune A
Channel A Tone Period TONE
BT T
» :21 T:d . 4-8IT Coarse Tune A At Mn:tailns
¥ Channel B Tone Period itfia Al R ™
» A3 4-BIT Coarse Tune B
»| A4 8-BIT Fine Tune C
Channel C Tone Penod
» A5 ineliind Rkeais #0 774 4-BIT Coarse Tune C \ l
- 5
e R6 | Nomse Panod Z 7 5-BIT Peniod Contral \
ADDRESS — IN/OUT Noise Tone
R7 | Enabie Y
LATCH/ A :] [+
Aol 108 | 10a]| C a A c B A
R10 | Channel A Amphitude A M L3 L2 L1 Lo P 3
#{ A1t | Channel B Amplitude [M L3 [2] | wo 2 k}
#{ R12 [Channel C Ampitude M TEEYEERY Lo 325 7 —
A ora
R13 8-BIT Fine Tune E AMPLITUDE '5
Penoad CONVERTERS
N B-BIT Coarse Tune E b 7 v (&
Ris |E Shape/Cycle [/ onT| aTT [ALT [HOLD \\ ‘]
#{ A16 | 'O Pori A Data Store 8-BIT PARALLEL I/O on Port A = 14
R17 | VO Port B Data Store 8-BIT PARALLEL 'O Port B
s E3 [e2 |ev |eo
’
AT
1644
ENVELOPE
GENERATOR
/0 PORT /0 PORT
REGISTER ARRAY B A
{16 READ/WRITE
CONTROL REGISTERS)
' ’ A
L ANALOG ANALOG ANALOG
CHANNEL CHANNEL CHANNEL
La B c
1
1087-1080 IDAT-10AD ’ y

APPENDIX C
VOTRAX SC-01 SPEECH SYNTHESIZER

The block diagram of the SC-01 was reproduced with
permission of Votrax. Copyright Votrax® 1980.

"
=
=
.”_i'_Q..m...o
'
£ H O
-
Se & ! el I -
238 5
a
o 8B o8 BB oW
=
> R/
an b
B E
5 o
®n
"= 9
w
-3
s
“ M
odn e
Rl
®mage a8
o men 3
HmBa D
. e EE B
cE ma
5 .
t/ o H:.
e 2
n
e
- "
4 v o=
g6 cag [% =
R g
a.. 8 h
L nom
L a
]

l,\
l
L0-0S
|

Ed

Idl

/
/

]
|
|

I8

19
ov
av

Table 1 Phoneme Chart Table 2 Phoneme Categories According to Production Features

Phoneme Duration Example Phoneme Duration Example Voiced Voiced Voiced Fricat. Fricat. Nasal No
Code Symbol (ms) Word Code Symbol (ms) Word Fricat. Stop Stop Sound
00 EH3 59 JACKET 20 A 185 DAY E A UH 1U Z B T S M PAO
02 EHl 121 HEAVY 22 1l 80 YARD Y A2 UH2 Ul J G K CH NG STOP
03 PAO 47 NO SOUND 23 UH3 47 MISSION YI AY UH3 W v p TH
04 DT 47 BUTTER 24 AH 250 MOP Tv <1k B THV ¥
05 A2 71 MADE 25 P 103 PAST I Afl ol =
06 Al 103 MADE 26 0 185 COLD 12 DD
07 ZH 90 AZURE 27 3 185 PIN I3 AHL 00
08 AH2 71 HONEST 28 U 185 MOVE ER AHZ 00l
09 I3 55 INHIBLT L 103 ANY ERl AW R
0A 12 80 INHIBIT 24 T 71 TIAP EH2 AWl ER
o8 | 11 121 INHIBIT 2B R 90 RED EH3 AWZ2 L
oc M 103 MAT w % 185 MEET
gD N ?? :ﬁ% gg ﬁz lgg %ig Copyright Votrax® 1980

E B o . 5
o v &y VAN o P 103 AFTER The above table was reproduced with permission of Votrax.
if gg* I;i g%%ﬁ g? 3§§ g? i%%gg For additional information on the SC-0l, contact: Votrax,
i3 < = 200 35 s 16 UNCLE 500 Stephenson Highway, Troy, Michigan 48084,

13 AWl 146 LAWFUL 33 UH 185 CUP Also the following article in the Byte Magazine provides
14 NG 121 THING 34 02 80 FOR additional information on phoneme usage:

15 AH1 146 FATHER 35 0l 121 ABOARD

16 001 103 LOOKING 36 U 39 YOU "Articulate Automata: An Overview of Voice Synthesis"
17 00 185 BOOK 37 ul 20 YOU February 1981 issue, page 164-187.

18 L 103 LAND 38 THV 80 THE

19 K 80 TRICK 39 TH 71 THIN

1L | 3 47 JUDGE 34 ER 146 BIRD

1B H 71 HELLO 3B EH 185 GET

1C G 71 GET 3C El 121 BE

1D F 103 FAST 3D AW 250 CALL

1E D 55 PAID 3E PAl 185 NO SOUND

1F S 90 PASS 3F STOP 47 NO SOUND

/T/ must precede /CH/ to produce CH sound
/D/ must precede /J/ to produce J sound

Copyright Votrax® 1980
The above -table was reproduced with permission of Votrax.

APPENDIX D

THE DEMONSTRATION PROGRAM

The demonstration program has been designed in modules so
that any part of the program can be used in any program you
create. These modules, therefore, were not necessarily
written for efficiency but rather for portability. Since
the entire program can be listed, viewed and copied, we
recommend you list and study them for better understanding.
In addition, ample space has been provided between data
tables on this disk for experimental use.

Each demonstration program includes a boot program, primary
routines, table access routines, data tables, menus and
demonstrations. The boot program will automatically load
all the necessary utility programs when the computer is
turned on and run the menu program. The main menu will
offer you a selection of demonstration sound effects and/or
speech.

Each demo will poke the location of the selected sound into
the pointer address and call the appropriate table access
routines (as discussed in the individual manuals). The
access routine will begin loading the registers with the
data from the data table at the pointer location and then
output the sound. The utility programs have been written in
assembly language for speed and in some instances, a
smoother sound.

The data tables are in machine language and are located at
the following address for each demonstration program:

SOUND I: Sound table at 8100.81AF

SOUND II: Sound table at 8100.81AF
SPEECH I: Speech table at 8100.8177
SOUND/SPEECH I: Speech table at 8100.8177

Sound table at 8900.89AF

To list the data table, enter the monitor of the Apple with
a CALL-151, then enter the address as shown above. For
example, to list the data table for Sound/Speech I, you
should enter after the asterisk "8100.8177" for the speech
table or "8900.89AF" for the sound table.

The sound table contains all the sound effects in the
demonstration program, in successive order. The values
stored in this table represent the values for each of the 16
registers of the PSG chip. Each sound effect requires only
two rows of values. If a register is not used to produce a
sound, the value "00" is stored for that register. For
example, the "gunshot" sound effect appears as follows:

8100- 00 00 00 00 00 00 OF 07
8108- 10 10 10 00 0A 00 00 00

Registers 0-5 are not set because the gunshot sound is a
noise effect not a tone effect. Register 6 is set to #$OF
(decimal eqivalent is 15) which sets the 5 bit noise period
to mid-value (highest value is 31 in decimal). Register 7
is set to #$07 (7 in decimal) to enable noise in all three
channels. The binary equivalent would appear as "00000111"
(See Figure 1-4). Registers 8-A (or 8-10) are each set to
#810 (16 in decimal) which sets the amplitude mode to a
variable level amplitude. The amplitude of all three
channels will be under the direct control of the Envelope
Generator. Register B (or 11) is not set. Register C (or
12) is set to #$0A (10 in decimal) to set the envelope
period. Register D (or 13) is set to #$00 which selects the
envelope decay. Registers E-F (or 14-15) are not set.

Many sound effect variations are created by changing one or
two register values. For example, the Explosion sound
effect (address 8130.813F) and the Ocean sound effect
(address 8140.814F) differ only by the envelope shape cycle.
The Explosion (#$00) is a one cycle decay pattern and the
Ocean (#$0E) is a continuous pattern (see Figure 1-5).

The speech table contains the phoneme codes for the words
and phrases used in the demonstration program. They are
listed sequentially. For example, the first word in the
table is "TOOT" and is composed of six phonemes (including
the stop code to designate the end).

8100- 2A 37 37 2A 03 3F 00 00

The word uses only three phoneme codes. The phoneme code
for #$2A (T) is the sound for the consonant "T" and the
phoneme code for #$37 (Ul) is the shorter duration sound for
the vowel "U." The code #$03 (PAO) is a no-sound phoneme
and is used as a pause before the word is completed. Some

D-2

words may sound "cut off" if a pause is not used. The pause
helps to complete the previous sound or helps to begin the
first sound. You will have to listen for these subtle
differences. Although this word appears to be produced by
the same number of phonemes as letters, there is no
connection. Phonemes are not associated with letters but
with sounds. For example, the word "OOPS" is composed of
eight phonemes.

8108- 03 37 37 25 25 1F 1F 3F

To achieve the correct pronunciation, the phoneme code #$37
(U1) is repeated twice followed by two #$25 (P) and two #$1F
(S). Again, the pause is used in the beginning to achieve
the correct sound and the stop code is used to end the word.

To produce a phrase, words are strung together. The no-
sound codes can be used to separate the words and maintain
rhythm. The number of no-sound codes between words depends
upon your preference. Generally a pause should also be used
to separate two hard or plosive sounds.

LIMITED WARRANTY

Sweet Micro Systems warrants, to the original purchaser
only, that this product shall be free from defects in
materials and faulty workmanship under normal use and
service for a period of ninety (90) days from the date of
purchase. Defects covered by this Warranty shall be
corrected either by repair or replacement, at our option.
In the event replacement is elected by Sweet Micro Systems,
any replacement product shall be warranted under the terms
of this warranty for the remainder, if any, of the original
ninety (90) day period. Sweet Micro Systems' liability is
limited to the cost of repair or replacement of any
defective part or product and Sweet Micro Systems shall not
under any circumstances be liable for special, incidental or
consequential damages of any kind resulting from use or
possession of this product. SOME STATES DO NOT ALLOW THE
EXCLUSION OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL
DAMAGES SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY
TO YOU.

If this product should require service, please contact us
for a Return Authorization Number. Sweet Micro Systems will
assume no liabilities for unauthorized returns. Return it
to Sweet Micro Systems, 150 Chestnut Street, Providence, RI
02903, postage prepaid.

THE ABOVE WARRANTIES FOR GOODS ARE IN LIEU OF ALL
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT
NOT LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE AND OF ANY OTHER
WARRANTY OBLIGATION ON THE PART OF SWEET MICRO SYSTEMS.
Some states do not allow the limitations on how long an
implied warranty lasts so the above limitation may not apply
to you.

This Warranty gives you specific legal rights, and you may
also have other rights which vary from state to state.

QUICK REFERENCE CARD

Please fill out this card and drop

RANTY REGISTRATION CARD:

]
O
2l
MO~ O M 0NN N o N
FlHlwod s Ao o RSB[R
b e =t L B R e - — o = -
T
o
£ — -
34-—-12!!1 = m
g & AL HDgAMNO D MEHMKZ a E b g E
wy
o
&3
O = o)~ N D M~ OO m O 1] (=] o~
SSANJITIRNRIIZNZLE3AST
o z O
b
& BHe Ea o -
5-9] E o : v me|m
" 5 [=1 u::ﬂxlu B | By By E
agqggonggﬂaﬁﬁg“ﬁﬁﬁ“%s
= b = | ﬁm»-n-q §|m nln-|3|m|m|ﬁ
a
2"‘\
T - e Rl e e o =R N = s = e I A R Y.
W NSNS IT RO NONOOMNSMSMSNM~S
o —y - L B] - -~
g-—l
o
go0N—oO o * -
= [= — ™ o
fEEEENRdIRE NN Oz m e BENE
2w
o
£
OOt TINOROOg|mOAMEKO—~MNMmM
OO0 0O0O0O0O0O0O0CTOOOO O i ri i
Q T o
~N g N ¢ 9
£ 2o
[5 £
. = 3_6
'g a E
£ o S
5 o . *
o o g g a
L -—
[o > c
L] - - o . O
> S 3 5 %
-
° o LLA w ¥
> &= o 2
e c w T
o o =T
s -
L
o E o
& % En
O " 6_3
- 5 0:1:}
o] o £‘;
z > o D
. o > +~ o
= E -~ o
o o g 2
E 7 a 'g
L' 3 - - v -—D
v e
L e > @ 9 o L .

EE
oo
- ;o
miglo o
Ag2e
NO O~ O~ DN~
R S g
— e N -
N B = :8
— — — [
oc»-lnaﬁﬁmm:mm
FNnworOOdmnOQ M N
L B T B e B W s T B N W)
o
o
wlmH ulmo
= E Mo OO IA = Aalv
CREEER AR EE
EZSR lﬁ | O Bl R A
LOonm o
NSO wSRT~R3AR
— et e - -
oHEo *
zESSAmh:ﬂumnm
F VMO ~0 o0 DS R
L B B B R R R L [e g
808 8008
O
o D
£ E B
535 -
o a o $
n E E o
g 33
'g o= 0
[~
a 1; B O
S Fa T e o
E RE6€F 3
@ mUn..Ea =]
e £3
> o
w c
o N
S B -
= 0 2
b4 o~
©
3
v
5
3 O
-
e DOOQODOO o
B o 00
o g,F
v o o
£ = % c o
2 i% :ﬁ 9 4
= =2
L iy 2 O
s 2 o> > o0
B «=+<T3 s
-U a :,C. -
O+t O & = - =

/T/ must precede /CH/ to produce CH sound
/D/ must precede /J/ to produce J sound

Copyright Votrax® 1980

r $10,000 0 $10,000-$20,000 O $20,000-$30,000 O

much is your individual O or family O income?

The above table was reproduced with permission of Votrax.

over $40,000 O

000-$40,000 O

QUICK REFERENCE CARD

Figure 1-3 PSG Registers

BIT

REGISTER

B7 B6 Bs B4 B3 B2 B1 BO

RO

Channel A Tone Period

B-BIT Fine Tune A

R1 // // /‘/A 4-BIT Coarse Tune A
R2 8-BIT Fine Tune B
Channel B Tone Period
R3 W/W 4-BIT Coarse Tune B
R4 B-BIT Fine Tune C
== Channel C Tone Period /W/ M R T
R6 MNoise Period //////////////A 5-BIT Period Control
= IN/ OUT Noise Tone
i S 108 10A B A C B A
R8 Channel A Amplitude ///X/‘/////// M L3 L2 L1 LO
Ro | CramnelBampitude © 77000 M | 1 | L | u Lo
R10 | Channel C Amplitude W///,//,///A M L3 L2 L1 Lo
R11 8-BIT Fine Tune E
Envelope Period
R12 B-BIT Coarse Tune E
R13 | Envelope Shape/Cycle Y 4 CONT| ATT [ALt] Hoo
R14 1/0 Port A Data Store 8-BIT PARALLEL YO on Port A
R15 1/O Port B Data Store 8-BIT PARALLEL /O Port B

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY CARD

PERMIT NO. 311-B

FIRST CLASS

PROVIDENCE, RI

POSTAGE WILL BE PAID BY ADDRESSEE

Sweet Micro Systems
150 Chestnut Street

Providence,

RI 02903

